Acknowledgments
	A There are many people that I have to thank for the support and opportunity to write this book. J.P. Withers who prodded me and gave me the opportunity. Charles Withrow, Calvin Drennen and Mike Estep who read and commented on early versions of this book. Last but definitely not least the Free Software Foundation.
GNU and the Free Software Foundation:
	The reason that we are able to include a free copy of a full featured C++ compiler, which the Free Software Foundation calls GPP, with this book is due to project GNU� XE "GNU" �� XE "project GNU" � of the Free Software Foundation.

Project GNU is organized as part of the Free Software Foundation, Inc.
The Free Software Foundation has the following goals: 1) to create GNU
as a full development/operating system. 2) to distribute GNU and
other useful software with source code and permission to copy and
redistribute. [on disk in d:chapter1\getting.gnu]

	The word “Free” in the Free Software Foundation� XE "Free Software Foundation" � name refers to the Freedom to exchange software and information, and not to the price.
	In practical terms, however, it is often possible to get GNU software for free, since they encourage copying their software. This freedom to copy, like all freedoms, has its responsibilities. The legal particulars about these responsibilities is in the chapter 1 directory in a file called “COPYING”.
	Briefly, the copying file will tell you about conditions of their copyright that allow us to copy their programs. One of the requirements is that the source code to the programs be made available. Further, that any work derived from GNU’s programs be distributed in the same way.
Preface
Who this book is for
	This book is for both the novice and the experienced programmer who wish an introduction to programming in C++. With this book you can :

Avoid spending the money to purchase a C++ compiler.
Learn the GNU C++ (GPP) compiler.
Learn Object Oriented Programming in C++ (GPP).
Write Programs with graphics, sound and mouse support.

Skills and resources needed to use the software and this book
	To fully benefit from this book you should be familiar with :

Directories and Sub directories.
Files and a text editor. The text editor you use should be under DOS, although you may use a Windows editor. However, the GPP programs and the GPP Compiler will not operate in Windows. You may find it inconvenient to use a Windows editor, since these GPP programs will require you to exit from Windows entirely before their use.

	Equipment� XE "Equipment Needed" � and Software Needed:

A text editor� XE "text editor" � that can edit DOS text or ASCII text. For example, Edit which comes with DOS.
DOS version 3.2 or newer.
A 386 or better computer with 2 M of Hard Drive space and a CD ROM drive. When referring to the CD ROM drive I’ll use d:, if your drive has another letter then use that letter instead of d:.
512K of memory or more. GNU GPP will use up to 128 M of memory if it is available.
How to read this book
	If you have never programmed in C before, then start with Chapter 1 : Introduction to C/C++. Otherwise, you may skip Chapter 1 and read Chapter 2 for an introduction to C++. If you are experienced in C++, then start in any chapter in which you are interested. The source code to all examples is provided. Even though all examples are based on the previous one, you can start at any point. This is one of the beauties of Object Oriented Programming; you don’t have to know the particulars of the Objects you use to build your program. All you need to know is what those objects do.
	There are appendixes that you may use for refrence when reading or working though the examples of this book. Appendix A, a glossary of common C++ terms. Appendix B, explains the online help available with GNU C++. Appendix C provides notes on selected standard C libary functions. Appendix D provides notes on selected C++ libary classes and functions.

Chapter 1: Introduction to C/C++
	I feel that the fastest way to learn C++ is to jump in and try it. Following that philosophy then, I will start with a simple example. This chapter of this book is a basic introduction to programming specifically with GPP. If you have experience in C, you may wish to quickly review the programs in this chapter or skip this chapter altogether.

File names of C++ and related files.
	The file naming convention used by GPP is shown in Table 1. The first column refers to the extension following a file name. This extension generally indicates the type of information in the file and can be up to three characters in length.
	
	Table 1 : File name extensions.
File Name Extension�Meaning��cc�C++ Program��c�C Program��h�Header File��a�Library File��exe�Executable Program��(none or blank)�COFF Program��o�Object File��bat�DOS Batch File��	
Introduction to C++
	This first program to break the ice, is the traditional “Hello, World” program. The Hello World program is contained in the file “hello.cc” in the Chapter1 directory, and is displayed below.

// Hello World Program� XE "Hello World Program" �
#include <iostream.h>
/*
	This is a multiple line comment. It is started by
	the slash and astrix above and ended by the
	astrix slash below.
	
	This type of comment can be useful in making
	large comments or in temporarily disabling a
	section of code without deleting it.
	
	*/
void main()
{
	cout << "Hello, World" << endl;
}
	
Compiling and linking a program
	The “Hello World” program, like any other C/C++ program, must be compiled and linked before it can be run. Compiling and linking your program creates machine code from your C/C++ program code. The Hello program is written in C++ which is understood by the writer and the compiler program. The computer itself however only understands machine code. Machine code is not understood by most humans; even most of those humans who do understand machine code cannot think in it beyond one or two instructions at a time. Therefore, since we have not as yet found a way for computers to understand a human language like English, we have to settle for a language like C++ which is somewhere between English and machine code.
	To compile and link the program Hello, you can enter the command below in the Chapter 1 directory. After installing the GPP compiler, you can use the same commands as those presented here to compile and link your programs by simply substituting your programs name for the names of the examples in this book.

C:\C\CHAPTER1> chapter1 hello

	The Chapter1 part of the above command starts a DOS batch file for us which issues the command to compile and link the program specified. In this case the program is our “Hello World” program named “hello.cc.” Batch files are simply files that contain commands that you could type into DOS, but are perhaps too long or tedious to want to type over and over again. You can look in the “chapter1.bat” file and see its contents if you wish. To know more about the gcc compiler and it’s parameters use the INFO program and type the command [g(gcc/gcc.inf)Invoking GCC], as described in Appendix B: INFO the On-line Help Program.
	The command ‘chapter1 hello’ will compile and link your program, while printing a number of messages which should look like this:

Simple C++ compile test
Reading specs from c:/djgpp/lib\specs
gcc version 2.6.3
 c:/djgpp/bin\cpp.exe -lang-c++ -v -undef -D__GNUC__=2 -D__GNUG__=2 -D__cplusplu
s -D__GNUC_MINOR__=6 -Dunix -Di386 -DGO32 -DMSDOS -D__unix__ -D__i386__ -D__GO32
__ -D__MSDOS__ -D__unix -D__i386 -D__GO32 -D__MSDOS hello.cc c:/djgpp/tmp\cc0105
30
GNU CPP version 2.6.3 (80386, BSD syntax)
#include "..." search starts here:
#include <...> search starts here:
 c:/djgpp/cplusinc
 c:/djgpp/include
 /usr/local/lib/g++-include
 /usr/local/include
 /usr/local/go32/include
 /usr/local/lib/gcc-lib/go32/2.6.1/include
 /usr/include
End of search list.
 c:/djgpp/bin\cc1plus.exe c:/djgpp/tmp\cc010530 -quiet -dumpbase hello.cc -versi
on -o c:/djgpp/tmp\cca10530
GNU C++ version 2.6.0 (80386, BSD syntax) compiled by GNU C version 2.6.0.
 c:/djgpp/bin\as.exe -o c:/djgpp/tmp\ccb10530 c:/djgpp/tmp\cca10530
 c:/djgpp/bin\ld.exe -o hello c:/djgpp/lib\crt0.o -Lc:/djgpp/lib c:/djgpp/tmp\cc
b10530 -lgpp -lgcc -lc -lgcc
C:\C\CHAPTER1>

	What was all that? The above is each step of the process involved in converting a C++ program into machine language and the results of each step. First, the gcc compiler gets called with a bunch of options, then it puts out assembly code which gets assembled in the as.exe assembler, which in turn produces an object file which gets linked using the ld.exe program, and finally, the program is compiled and is ready to run. Now is not the time to worry about all of that though, just know that it works.
Running a program
	To run the “Hello World” program after it has gone though the previous process, use the Go32 program, as shown below. Now, immediately following this news there should be several questions coming to mind. First, what is the Go32 program? Second, do we really have to precede all of the programs we write in GPP with this Go32 thing? And third who is DJ Delorie and why does that name appear on our program?
	
	The “Hello World” program will produce the following output:

C:\C\CHAPTER1>go32 hello
go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
Hello, World

C:\C\CHAPTER1>

	The Go32 program is a 32 bit DOS extender, which is a type of program that allows you to run other programs which are not limited to 640K of memory. The 640K limit comes from a time in the history of computers when DOS was first written. At that time the new 8086 computer which was at the heart of the first PC’s could access an amazing 1 M of memory. Previous small computers could only access 64K and so imposing a limit of 640K seemed to be quite reasonable. Heck, most of the early PC’s only had 540K or less anyway. Little did Microsoft and IBM realize how fast and how large computers would grow.
	To preserve the ability to run old programs which work based on the assumption that 640K is the limit of memory available, DOS had to maintain that limit and impose it on new programs being written. Several programs exist now that allow you to bypass this 640K limit; Go32 is one such program. By the way, Go32 itself does have a limit of 128M as the largest program it can run; that seems reasonable to me (at least for now).
	On to the second question. No, we do not have to proceed all of our programs with Go32. You can use the COFF2EXE program to allow your program to call GO32 when it runs. To do this you simply type:

C:\C\CHAPTER1> coff2exe hello

	When you use the COFF2EXE program what happens is that the program you specified is copied and converted into an EXE file. An EXE file can be executed directly simply by typing its name. However any EXE files created in this way are not standalone executables, the GO32.EXE file must be available for the program to run. It is possible to eliminate even this requirement by including GO32.EXE into your program. However, this requires some alterations to the COFF2EXE program and its recompilation. It has been made slightly difficult to do this because the designers of the GPP compiler do not feel that this is a good idea. The designers felt that making GO32.EXE separate meant that should an error be found in GO32, then it could be changed and redistributed without needing to recompile all those programs already written. (Remember to read and understand the terms in the copying document before redistributing code written with the GPP compiler.)
	The answer to the third question is that DJ Delorie is the person who wrote Go32 and the GPP compiler that we are using. We are required by the copyright on the GPP compiler to recognize this fact in all programs written using the compiler. We are assisted in this by the first line of output presenting this information for us. Since we are not charged for the use of the compiler this is a small price to pay in recognition of the enormous effort involved in writing and maintaining this GPP compiler. You will notice that we are running the 3rd maintenance level of the 12th version of this program. There were 5 maintenance levels to the 11th version, I hate to imagine the time and effort required to accomplish this. A maintenance level is a revised version of the program to fix errors found in previously released versions. A new version occurs when actual features are added or improved.
A few generalities about C/C++ programs
	C/C++ programs are case sensitive. That is, a variable name like “name” is not the same as “Name”, “nAme” or “NAME” since the case or capitalization is different.
	Another note about C/C++ is that programs written in these languages run faster than in other languages. This is because C/C++ is optimized for speed, at the expense of being programmer friendly. C, and to some extent C++, assume that the programmer knows what he or she is doing and does not need the help of the compiler, to avoid common mistakes. As we discuss issues where common mistakes might occur, I will mention them to you.
	I should also mention that variable names� XE "variable names" � in C/C++ cannot contain spaces as part of their names. Often underscores are used instead of spaces. For example “long_name” instead of “long name”.
Writing Comments in C++
	In C++ single-line comments� XE "comments" �� XE "single-line comments" � can begin with the double forward slash // as in the first line of the “Hello World” program. Since the comment will end on that line by definition, no end-of-comment syntax is required.
	For multiple line comments� XE "multiple line comments" �, /* and */ begin and end that section of your program, as illustrated in the “Hello World” source code.
	For single line comments anything after the // on that line is ignored by the C++ compiler when the program is compiled. Similarly, anything between the /* and */ is also ignored by the compiler. Although confusing to read, a comment can begin at any point on a line, and if it is of the /* */ variety, it may end at any point on a line.
	Below is an illustration of the /* */ comments where a comment may be embedded in a line of code.

some code /* a comment */ more code
	
	Why write something if it is going to be ignored? Well, it is considered Good Programming Practice. In general though it may be helpful in remembering a particular programming trick or to explain in English what the program is supposed to be doing.
Preprocessor Directives
	What is a “preprocessor directive� XE "preprocessor directive" �”? Well, the first line of the program that is not part of the comments (i.e. #include <iostream.h> from the “Hello World” example) is a preprocessor directive. There is a program called the preprocessor� XE "preprocessor" � which reads your C++ program and looks for lines starting with a #. Any such lines are used by the preprocessor to change the source code of your C++ program in one way or another prior to being compiled.
The include Command
	The include command, or directive, appropriately enough includes another file into your program. Both C, and C++ gain a large degree of their flexibility by providing this feature. By inserting an include file into your program you can use the code available in a library or from some other C/C++ program file. Here we want to print the message “Hello, World,” to do that we must use the stream class library to print. A class library is a collection of program objects. Objects are like building blocks for a program. Program objects are functional elements consisting of both program code and data that can be pieced together by the programmer to make a program.
	In this case the include file is <iostream.h� XE "iostream.h" �> which has the required information to use the stream class of program objects. This stream class defines for us how to print to the screen, or a printer and how to read input from the keyboard or a file.
	In order for the preprocessor to include this <iostream.h> file into your program, the preprocessor must first know where to find the file. The angle brackets tell the preprocessor to search the “standard” include directories. You specify when you run the compiler where those standard include directories are. See the INFO program about compiler options under the -I option [g(gcc/gcc.inf)Invoking GCC],
	The file iostream.h is a header file as indicated by the “h” file extension. The iostream.h file contains definitions for input and output streams. In other words the file iostream.h allows us to use the cout (pronounced “C out;” cout stands for character out) stream to print the words “Hello, World” on the screen. The cout stream represents the manner in which characters reach their destination. The destination can be a file, a screen, a printer, or a serial port, etc. There are other features as well which come along with the cout stream. We will cover these features in more detail in the next chapter.

The main routine
	One requirement of C++ programs is that they have one, and only one, main routine. The main� XE "main" � routine can be of type “void” but is usually type “int”. That is “void” as in not returning a value, or “int” which returns an integer number.
	What is this return stuff? And why return an integer number?
	All programs return a number to DOS after being run. This is accomplished by the program leaving this number in a prescribed place after it executes. Whether the program intends to return a number or not, a value of some sort will exist for DOS to find. DOS is not intelligent and cannot read what the program prints or sends to a file. Therefore, to check for indications of an error, DOS looks in the prescribed place for the integer number which the program has returned. A zero means no error and any other value indicates various possible error conditions. For our purposes the “Hello World” program will never be in an error condition so we return void which DOS interprets as a zero, or no error.
	In the “Hello World” program the parentheses following main are empty but must be there to show what, if any, parameters main has. Main often does not have parameters but if it does they are used to get data from the command line used to start the program.
	An example of this is the DOS program, Copy. The Copy command is used as shown below:

C:\DJGPP> copy file1 file2

	where file1 is copied into file 2. The copy program uses the file names file1 and file2 from the command line to know what file to copy where.
The block
	You may have noticed the { after main() and the } at the end of the program. The { symbol starts a block and the } ends a block� XE "block" �. A block may contain several lines of code and can be put in place of any one line of code. This is a handy construct that helps to control the flow of code execution.
	In the Hello World example the block contains the code for the main routine. The opening bracket {, is where exeution for the routine starts and the closing bracket }, is where the execution ends.
	As we cover the IF statement and the various Loop statements notice how the blocks are used. The blocks, essentially divide the code into sections, to control the flow of program execution. The brackets define the start and end of these sections.
Simple printing
	To print� XE "print" � in C++ you can use “cout”. “cout” represents an output stream into which output can be directed using the “<<� XE "<<" �“ operator. So, as in our Hello World program, the phrase in quotes “Hello, World” is moved to the output stream and followed by “endl� XE "endl" �” which is a “stream manipulator”� XE "stream manipulator:endl" �� XE "stream manipulator" � that ends the current line. The endl stream manipulator acts as a carriage return for the output so that the line of text output is ended.

cout << "Hello, World" << endl;
Common Data Types in C++
	What are data types� XE "data types" � and why do we want them?
	Data types are variables� XE "variables" �, as in algebra that can contain values. There are many kinds, or types, of variables. Unlike algebra however, variables in C++ can have not only numeric values but can contain any data that you care to define. There are built in types which we are about to discuss. C++ also has the facility to define your own data types based on whatever data you wish to describe. In this way you could, for example, describe an element in a program such as your general ledger in accounting or a monster in a game. You can even define a variable that contains the whole program. These larger, more complex variables are called Objects and are built from these simpler data types.
	The following program illustrates a few common data types in C++.
Datatype examples

// Filename: Datatype.cc
//
// This program demonstrates some simple C++ Data Types
#include <iostream.h>
// This is a defined variable
#define NULL 0

void main()
{
	// Declaring and Initializing Simple Variables
	
	int an_integer=0;
	float a_floating_point_number=0;
	long a_long_integer=0;
	char a_character_variable='a';
	
	// Printing Variables.
	cout << "The following are variables" << endl;	
	// This next line prints a blank line to the screen.
	
	cout << endl;
	// Assign a value of 10 to the integer and print it.
	an_integer=10;
	cout << "An integer Value : " << an_integer
		<< endl << endl;
	
	// Also Floating Point numbers.
	a_floating_point_number=3.1415;
	cout << "A floating Point Value : "
		<< a_floating_point_number
		<<endl << endl;
	
	a_long_integer=200298132;
	cout << "A Long Integer Value : "
		<<a_long_integer << endl << endl;
	
	cout << "A character Variable : "
		<< a_character_variable << endl << endl;
	
}
	To compile the datatype program use the following command. In this case as in the hello world program the complier will print a lot of information to the screen.

	C:\C\CHAPTER1>chapter1 datatype

	The Datatype program above will produce the following output.

C:\C\CHAPTER1>go32 datatyp
go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
The following are variables

An integer Value : 10

A floating Point Value : 3.1415

A Long Integer Value : 200298132

A character Variable : a

C:\C\CHAPTER1>
#define, Defined variables
	Defined variables are set to one value at compile time. Compile time refers to the time the compiling process is engaged. At compile time the defined variables become values substituted into your program by the preprocessor.

#define NULL 0

	The above define statement substitutes 0 into the program for all occurrences of the word NULL. This can make the program more readable by saying what you mean instead of what the computer needs to see. For example you may logically mean TRUE or FALSE but the computer needs to see the literal values of 1 or 0 to interpret this. The 1 is considered true when the compiler tests an expression and the 0 is considered false. But writing TRUE instead of 1 is clearer to the programmer.
 	As another illustration you might have a map representing say 0 to 10 miles of distance. If you define START as 0 and END as 10, then you could the use START and END in your program. Perhaps later you may decide that a longer map from 0 to 12 miles long would be better. You would simply need to change the define for END to 12 instead of changing 10 to 12 several times thoughout your program.
int, Integers
	The integer data type can hold whole numbers from negative 231 to positive 231. When performing divisions on these numbers the answers are truncated. For example, 5 divided by 3 would yield 1 rather than the decimal value for 1 2/3, or rounding to 2, since the remainder of 2 would simply be discarded.

	int an_integer=0;

	This line of the program declares the variable “an_integer” to exist and be of type “int”. It also gives the variable an initial value of 0. The semi-colon at the end of the line ends this declaration. We could declare several variables on one line if we wish. For example:

	int a,b,c=0,d=10,g,yet_another_int=99;

	The commas in the list separate the variable names. The variables a, b, and g in our example do not get assigned an initial value. They have an undermined number as their initial value which could be anything from negative 231 to positive 231. The variables c, d, and yet_another_int will have the values 0, 10, and 99, respectively. We could say the same thing with some blanks in the line to make it easier to read such as this:

	int a, b, c=0, d=10, g, yet_another_int = 99;

	The spaces just get ignored but do make it easier for you to read.
	What’s going on with this ‘undetermined number’ stuff? Well, as mentioned earlier, the C/C++ programming languages are optimized for speed of program execution. One way this speed is accomplished is by having the compiler assign a piece of memory to hold your integer value without taking the time to initialize it to a value. Thus, whatever value that is already in that memory space becomes the value of that integer variable.
float, Floating Point Numbers

	Floating point numbers can be very large or very small. They can hold fractional values like the value of (. They are of course limited in precision. However, for most programming needs - especially with a 32 bit compiler like GPP - that precision is more than we need. When the numbers get really large or really small they go into scientific notation and print values like 5.37252839e-10 where the e indicates the exponential in the scientific notation which otherwise might look like 5.37252839 x 10-10. These float variables have to be declared and initialized in the same way as the int variables.

long int, Long integer values

	Believe it or not but long int is the same as int. However, with non 32 bit compilers long int’s were 32 bits signed which means +/- 231 (as opposed to unsigned, or no +/- associated with the value) while the int was only 8 or 16 bits. With a true 32 bit compiler though the distinction is lost.

char, Character variables
	The line below declares a variable of type char. char’s can hold a single character value, such as an ‘a’ through ‘z’. Characters can also be punctuation marks or digits. The values are the set of ASCII (American Standard Code for Information Interchange) character codes. Suffice it to say that every digit, punctuation mark and letter both upper and lower case all have different numeric values. In this example we have initialized our variable “a_character_variable” with the value of a lower case a. The single quotes around the ‘a’ identify the value as a character, as opposed to being another variable named a.

	char a_character_variable='a';

Operators
	Operators are to perform various simple tasks such as addition, multiplication, Boolean operations, assignments comparisons and so on. Some common operators will be covered in this section.
Simple math
	+	Addition.
	-	Subtraction.
	*	Multiplication.
	/	Division.
	%	Remainder or modulus.

	The above operators are simple math operators. You might notice that the * operator which we used for indirection before is now used for multiplication. This is not a conflict, the compiler resolves the meaning of an operator by how that operator is used. This is called operator overloading and is explained more fully in chapter 2.
	One missing operator is exponentiation, raising a number to a power such as squaring or cubing numbers. In C/C++ you must call a function to do these operations. The “math.h” header file contains definitions for various common math functions that are not defined as operators. For information on the functions in the “math.h” library functions see Appendix C: The standard C library. Since most of these standard functions are not covered in the INFO on line help program.
Pre and Post increments
	The next line executed is this peculiar line.
			counter--;
	This is a decrement command. It might be written in other languages like this:
				counter = counter -1
	But in C/C++ there is a short cut with the minus minus operator “--” that allows us the same operation with less typing. C/C++ also has the plus plus operator “++” which increments a value by 1 in a similar way.
				counter++;
	Is the same as :
				counter = counter +1;
	Now there is a little more to this story than first meets the eye. There is also a statement like this:
				--counter;
		and
				++counter;
	The difference here is that the first two are post increment and the second two are pre increment. In the first case the counter would use the current value and then increment the counter. In the second the counter would be incremented before the value was used.
	That is shown here.

		counter=5;
		a= ++counter; // a gets the value 6 increment first
				 // (preincrement)

		b= counter++; // b gets the value 6 also increment after
				 // (postincrement)

		c= counter; // c gets the value 7 counters final value.
Operator Order of Precedence

1. Highest�� 7. Relational���()�Function Call�<�Less than��[]�Array Subscript�<=�Less than or equal to��->�C++ Indirect Component�>�Greater than��::�C++ Scope Selector�>=�Greater than or equal to��.�C++ Direct Scope Selector�
 8. Equality���2. Unary��==�Equal to��!�Logical negation (NOT)�!=�Not equal to��~�Bitwise (1’s) complement� 9. Bitwise���+�Unary plus�&�Bitwise AND��-�Unary minus�|�Bitwise OR��++�Pre/Post Increment� 10. Boolean ���--�Pre/Post Decrement�&&�Logical AND��&�Address�||�Logical OR��*�Indirection� 11. Conditional���sizeof�Returns Size in Bytes�?:�a ? x : y “If a then x else y”��new�Dynamically allocate C++ Storage�
 12. Assignment���delete�Dynamically de-allocate C++ Storage�=�Simple Assignment��3. Multiplicative��*=�Assign Product��*�Multiply�/=�Assign Quotient��/�Divide�%=�Assign Remainder��%�Remainder�+=�Assign Sum��4. Member access��-=�Assign difference��.*�C++ dereference (direct)�&=�Assign Bitwise AND��.->�C++ dereference (indirect)�^=�Assign Bitwise XOR��5. Additive��|=�Assign Bitwise OR��+�Binary plus�<<=�Assign left shift��-�Binary minus�>>=�Assign right shift��6. Shift�����<<�Shift left bit wise����>>�Shift right bit wise����
Controlling the flow of execution
	Congratulations, having read this far you have covered the most difficult parts. Do not fear if you do not feel as though you have a firm grasp on that last part of the book we will return to those topics again. Now though is controlling the flow of execution, this is the easy part.
	One of the most basic types of control flow that a program might need is that of loops. Why loop over a section of code over and over? Well there are many reasons. One for example would be in a game where players take turns, the program would start that turn taking process over and over until the game ended. A program example is the “while” program below.

//while.cc
//
// An example of the while loop
//	This program copies a string from the from_string to the
	// to_string.
#include <iostream.h>
#include <string.h>

void main()
{
	int counter=0;
	char *from_string="A message to copy";
	char *to_string;
	
	cout << "While Loop Example " << endl;
	
	counter=strlen(from_string);
	cout << "String length : " << counter
		<<endl;
	
	to_string= new char[counter+1];
	
	while (counter > -1)
	{
		to_string[counter]from_string[counter];
		cout << " Copied Char : "
			<< from_string[counter]	
			<< " Ascii Value : "
			<< (int) from_string[counter]
			<< endl;
		counter--;
	}
	cout << "The From String : " << from_string
		<< endl << endl ;
		
	cout << "The To String : " << to_string
		<< endl ;
		
	delete to_string;
}

	The while program will produce the following output:

C:\DJGPP>go32 datatyp
go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
While Loop Example
String length : 17
 Copied Char : Ascii Value : 0
 Copied Char : y Ascii Value : 121
 Copied Char : p Ascii Value : 112
 Copied Char : o Ascii Value : 111
 Copied Char : c Ascii Value : 99
 Copied Char : Ascii Value : 32
 Copied Char : o Ascii Value : 111
 Copied Char : t Ascii Value : 116
 Copied Char : Ascii Value : 32
 Copied Char : e Ascii Value : 101
 Copied Char : g Ascii Value : 103
 Copied Char : a Ascii Value : 97
 Copied Char : s Ascii Value : 115
 Copied Char : s Ascii Value : 115
 Copied Char : e Ascii Value : 101
 Copied Char : m Ascii Value : 109
 Copied Char : Ascii Value : 32
 Copied Char : A Ascii Value : 65
The From String : A message to copy

The To String : A message to copy

C:\C\CHAPTER1>

	One first thing that is different about this program is that we have used an include statement to include now the string.h file to access library functions for String handling.
//while.cc
//
// An example of the while loop
//	This program copies a String from the from_string to the
	// to_string.
#include <iostream.h>
#include <string.h>

void main()
{
	You will notice the line following the include <iosteam.h>, includes the <string.h> header file. This give us access to a handy library for working with strings. It is a library that comes to C++ from C. So it is an older type of library which consists of function calls rather than objects. Function calls are calls to subsections of code that can accept parameters and return values. The function that we included this string.h file for was the “strlen” function. As the name of the function suggests it returns the length of a String (i.e. : STRing LENgth)

	counter=strlen(from_string);
	cout << "string length : " << counter
		<<endl;
	The above code produces the below output.

string length : 17

	Notice that the variable counter is assigned the return value of the function strlen, and that the function strlen gathered that information from the “from_string”. What the strlen function did was to count the characters in the from_string and return an integer value to be assigned to counter.
	The variable from_string is a character array which we learned is the same as a character pointer to the beginning of the array. The function call to strlen passed the value of the parameter which is the pointer to the array of character in from_string.
	All parameter passing in C/C++ is by value, you just have to keep in mind what the value you are passing is. If the strlen function changed the value of the pointer it was passed then it would be changing its own copy of that pointer and when the function returned the original pointer from_string would be still pointing at the same place. Which is most likely how strlen works. The actual implementation from compiler to compiler may vary but the results should be the same.
	Now we see the use of the “new” operator.
	char *to_string;

	to_string= new char[counter+1];
	Originally we defined to_string to be a character pointer but did not associate with it any memory. In order to be able to copy the contents of the from_string into the to_string we must first allocate memory to the to_string. This is accomplished though the new operator.
	The second line above is an assignment, we can tell that by the single equal sign. What value is being assigned though?
	New is an operator that returns an address of allocated memory of the requested size. Well at least that makes sense since we are assigning its value to a pointer and pointers hold addresses. New also needs to know how much memory to allocate. That information is provided by the char[counter+1].
	Now how is that? It’s true, we can define a character array by a statement like the one that follows:
	char array[10+1];
	So what we are doing with the new operator is specifying a char array and how big it’s going to be. From knowing what type of data and what size it is new can allocate the required memory and return the address of that memory.
	OK, but why the +1 why not just use counter?
	The strlen function returned to us the number of characters in the array but did not count the NULL at the end of the String. Therefor we must allocate one extra space for that NULL to exist in.
	We must always remember to release that memory when we no longer need it, and that is accomplished by the delete operator.
	delete to_string;
	The delete operator does not return any value it merely frees up the memory previously allocated by the new operator.
	If we fail to delete memory that we have allocated with new then we can cause problems for our selves. The types of problems you might see are, if your program runs for a long time as in a good game where you play for a long time, then the program might run out of memory. That could happen because as you go though loops you might use new over an over again without using delete. Slowly but surely eating up all the available memory.
	If this is a while program and its supposed to illustrate the while loop then when are we going to talk about it!
	Now! OK this is it, the while loop.
	
	while (counter > -1)
	{
		to_string[counter]=from_string[counter];
		cout << " Copied Char : "
			<< from_string[counter]	
			<< " Ascii Value : "
			<< (int) from_string[counter]
			<< endl;
		counter--;
	}
	The while is followed by parenthesis that check a condition. These conditions work the same way in all of C/C++. You can use the greater than ‘>‘ or less than ‘<‘ or equals ‘==‘, in conjunction with equations and Boolean operators such as ‘&&’ for “AND”, ‘||’ for “OR” and ‘!’ for a logical “NOT” . The double equals ‘==‘ is used to compare since the single equals ‘=‘ is used for assignment. In the above “while” loop then, while the expression contained in parenthesis after the “while” key word is true then the loop executes. The body of the loop starts at the beginning of the block denoted by the { symbol and ends at the } symbol.
	At first counter is assigned the value 17 by the strlen function. Since17 is greater than -1 the while condition is true. Following that we execute the loop one time and check the condition again to see if the condition is still true or not before executing the loop again.
	Inside the loop we copy the value of the from_string at the 18th position numbered number 17 since we start counting at 0, into the to_string at the same position.
	We then execute the cout statement which produces the following output.

Copied Char : Ascii Value : 0

	What happened here? The Copied Char does not show a value and its Ascii value is 0? Yes that is the NULL at the end of the String.

	Now back to that while loop, so after we copied the 18th character when counter was equal to 17. Counter was decremented making counter equal to 16.
	In the test after the “while” keyword 16 is greater than -1 so we go through the loop again. In fact we keep going though the loop for counter =15, 14, 13...

 Copied Char : y Ascii Value : 121
 Copied Char : p Ascii Value : 112
 Copied Char : o Ascii Value : 111
 Copied Char : c Ascii Value : 99
 Copied Char : Ascii Value : 32
 Copied Char : o Ascii Value : 111
 Copied Char : t Ascii Value : 116
 Copied Char : Ascii Value : 32
 Copied Char : e Ascii Value : 101
 Copied Char : g Ascii Value : 103
 Copied Char : a Ascii Value : 97
 Copied Char : s Ascii Value : 115
 Copied Char : s Ascii Value : 115
 Copied Char : e Ascii Value : 101
 Copied Char : m Ascii Value : 109
 Copied Char : Ascii Value : 32
 Copied Char : A Ascii Value : 65

	The last character copied is the ‘A’ with an Ascii value of 65 when counter was equal to 0, since A is the 1st character. After copying the letter ‘A’ counter is decremented to -1 and fails the test -1 is not greater than -1. The next statement executed then is immediately following the while loop or :

	cout << "The From String : " << from_string
		<< endl << endl ;
		
	cout << "The To String : " << to_string
		<< endl ;
		
	delete to_string;

	Where we print our messages and delete the to_string.
	Now the cout statement that was in the while loop printed the Ascii values of the characters but how?
		cout << " Copied Char : "
			<< from_string[counter]	
			<< " Ascii Value : "
			<< (int) from_string[counter]
			<< endl;

	The key is the line following the “Ascii Value : ” message.

			<< (int) from_string[counter]

	The int in parenthesis is a type cast. A type cast is where you take a value of one type and convert it to a value of another type. In this example we start with a character from the character array from_string and convert it into an integer by the (int) type cast. The integer number that you get by converting a character into a number is the Ascii code for that character. In the case of the capital ‘A’ that value is 65.

Loop Statements
	This loop program shows each of the loop structures avaiable with C/C++. Each loop will be briefly discussed.

//Loop.cpp
//
// An example of the some loops
//
#include <iostream.h>

void main()
{
	int counter=0;
	
	// The While Loop
	cout << "The While Loop : " ;
	while (counter++<10)
	{
		cout << counter << " " ;
	}
	
	// The Do - While Loop
	cout << endl << "The Do while Loop : ";
	counter=0;
	
	do
	{
		cout << counter << " ";
	} while (counter++<10);
	
	// The For Loop
	cout << endl << "The For Loop : ";
	
	for (counter=0 ; counter<10 ; counter++)
	{
		cout << counter << " ";
	}
}

	The loop program provides the following output.

C:\C\CHAPTER1>go32 loop
go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
The While Loop : 1 2 3 4 5 6 7 8 9 10
The Do while Loop : 0 1 2 3 4 5 6 7 8 9 10
The For Loop : 0 1 2 3 4 5 6 7 8 9
C:\C\CHAPTER1>
While Loop
	The general syntax of the while loop is below.

	while (expression) statement

	The “while” is a keyword which tells the compiler that you wish to execute a while loop.
	The paraenthese enclose an expression which can be any valid expression. Usually this is a conditional expression, however an assignment is also a vaild expression.
	The “statement” can be any valid C/C++ statement and is usually a block. A block can be substituted for any one statement, and can contain more than one statement within itself.
	The while loop checks to see if the expression returns a non zero number (TRUE) and then executes the statment. This is repeated until the expression returns a zero or (FALSE) value.
	Note: If you use a single statement instead of a block then the statement that you use will end with a semi-colon, hence no semi-colen is required for ending the while loop.
While loop example
	In the following example the counter variable was set to 0 before the execution of
the while loop. The counter of value 0 was compaired to 10 in the expression (counter++<10) which evaluated to TRUE. Next the counter is incrimented by the post incriment operator, so that the first value printed is a 1. The last time through the loop after counter was printed with the value 9. Counter is compaired to 10 and is again found to be less than 10. Counter is then incrimented to 10 and is printed. Then when counter is compaired to 10, counter is found to not be less than 10 so execution continues immeadialy following the loop.

	// The While Loop
	cout << "The While Loop : " ;
	while (counter++<10)
	{
		cout << counter << " " ;
	}

	Output of the above while loop:

The While Loop : 1 2 3 4 5 6 7 8 9 10

Do Loop
	The general syntax for the do loop is:

	do statement while (expression) ;

	The do loop has two key words “do” and “while”. The order of execution is what differentiates this do loop from the while loop. The statement is executed first and then the expression is checked afterwards.
	As in the while loop a block may be substituted for any valid C/C++ Statement.
Do loop Example
	In this example counter is set to zero before the execution of the loop. the counter value is printed, and compaired to 10 in the expression (counter++<10). Since 0 is less than 10 this evaluates to TRUE. The post incriment operator increases the value of counter by 1 and then since the expression evalueted to TRUE the do loop is executed again. When counter is 9 the expression (counter++<10)

	// The Do - While Loop
	cout << endl << "The Do while Loop : ";
	counter=0;
	
	do
	{
		cout << counter << " ";
	} while (counter++<10);

	Output of the the Do Loop Example

The Do while Loop : 0 1 2 3 4 5 6 7 8 9 10

For Loop
	The general syntax for the for loop is:

	for (expression1 ; expression2 ; expression3) statement

	The for loop is equivilant to the following while loop.

	expression1;
	while (expression2)
	{	statement
		expression3;
	}

	In general expression1 is used to initialize a variable and so is usually an assigment expression. Expression2 is usually a conditional expression to determine when to stop the loop. Expression3 is usually used as an incriment or decriment expression.
For loop Example:
	In this for loop example the counter is initalized to zero by the counter=0 part of the for loop. Next counter is compaired against 10 to see if it is less than 10. Then the body of the loop is executed which prints the counter. Then the counter increased by one by the counter++ part of the for loop. This continues until counter reaches the value of 10 and is no longer less than 10.

	// The For Loop
	cout << endl << "The For Loop : ";
	
	for (counter=0 ; counter<10 ; counter++)
	{
		cout << counter << " ";
	}

	The output of the for loop example

The For Loop : 0 1 2 3 4 5 6 7 8 9
The IF statement
	The if statement is used by programmers to change the flow of execution of a program dependant on the values of variables. In its simplest form then the if statement has the following two syntaxes.

	if (expression) statement1

	OR

	if (expression) statement1 else statement2

	The else clause is optional.
	When the expression conatined in parenthesis is TRUE or nonzero in value, statement1 gets executed.
	When the expression is FALSE or equal to zero then if there is an else clause statement2 will be executed. If there is no else clause then the next statement exeuted will the statement following the if.
Example of the IF statement

//ifdemo.cc
//
// Demonstration of the IF statement

#include <iostream.h>

void main()
{	
	int a=0,b=0,c=0;
	
	cout << "IF Statement Demonstration:" << endl;
	
	if (a==b)
	{
		cout <<" a equals b, a="
			<< a
			<< " and b="
			<< b
			<< endl;
		a=20;
	}
	
	if (a==c)
	{
		cout <<" a equals c, a="
			<< a
			<< " and c="
			<< c
			<< endl;
		a=20;
	}
	else
	{
		cout <<" a does not equal c, a="
			<< a
			<< " and c="
			<< c
			<< endl;
		a=20;
	}
		
}

	Output of the if demo program:

C:\C\CHAPTER1>go32 ifdemo
go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
IF Statement Demonstration:
 a equals b, a=0 and b=0
 a does not equal c, a=20 and c=0

C:\C\CHAPTER1>

The Case Statement
	The case statement is very usefull. The case statement can be used in place of a large number of “if” statements where you wish to check a variable against a list of possible values. The general syntax is as follows:

	switch (expression)
	{
		case value1 : statements1

		case value2 : statements2

		case valueN : statementsN

		default : statements_default
	}

	The words “switch”, “case” and “default” are keywords for the case statement. The “default” keyword is optional. After the expression is evaluated the value of the expression is compaired against the values supplied after each “case” keyword. If the values match then execution starts at the statement following that “case” where the values matched. If non of the case values match the value of the expression and there is a “default” keyword then the statement after the default will be executed.
	The “break” statement is often used with the case statement, however it is not a part of the case statement. The “break” statement exits flow the flow of control from the case statement. If no break statement were used and the flow of execution started at one case keyword then the flow of execution would continue sequentially through the following case clauses one after another.
Case statement example

//case.cc
//
//Case Statement Demonstration

#include <iostream.h>

void main()
{
	int a;
	
	cout << "Please enter an integer number under 10 : ";
	
	cin >> a;
	
	switch (a)
	{
		case 1 :
			cout << "Case number 1 a=1";
			break;
		case 2 :
			cout << "Case number 2 a=2";
			break;
		case 3 :
			cout << "Case number 3 a=3";
			break;
		case 4 :
			cout << "Case number 4 a=4";
			break;
		case 5 :
			cout << "Case number 5 a=5";
			break;
		case 6 :
			cout << "Case number 6 a=6";
			break;
		case 7 :
			cout << "Case number 7 a=7";
			break;
		case 8 :
			cout << "Case number 8 a=8";
			break;
		case 9 :
			cout << "Case number 9 a=9";
			break;
		default :
			cout << "Default Case "
			 << "a is not between 1 and 9";
	}
	cout << endl;
}

	Output of the Case example program (Ran the program 3 times):

C:\C\CHAPTER1>go32 case
go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
Please enter an integer number under 10 : 2
Case number 2 a=2

C:\C\CHAPTER1>go32 case
go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
Please enter an integer number under 10 : 11
Default Case a is not between 1 and 9

C:\C\CHAPTER1>go32 case
go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
Please enter an integer number under 10 : -6
Default Case a is not between 1 and 9

C:\C\CHAPTER1>
Chapter 2 : Pointers and Arrays
Inside chapter 2
Pointers : Definition and importance
Pointer Facts : Declaration and basic use
Pointer Math
Type Casting
Pointers : A common error explained by illustration
Arrays
multidimensional arrays (random numbers too)
Character arrays
Compiling Chapter 2 Programs
	The program examples for this chapter are in the C:\C\CHAPTER2> directory. The batch file CHAPTER2.BAT can be used to compile any program shown in this chapter. For example, the following command line would cause the example program struct.cc to be complied.

C:\C\CHAPTER2> CHAPTER2 POINTER1

	Here are the contents of the batch file CHAPTER2.BAT

@echo off
echo Simple C++ compile test
script -f chapter2.lis gcc -v %1.cc -o %1 -lgpp

	This batch file has only one line for the actual compilation of the example programs.
Script Utility
	The script utility is used in the chapter2 batch to record the output of the compiler into the file chapter2.lis. Please note that this file is created and overwritten each time you compile a program. So after issuing your command to compile a file and you receive multiple errors from the compiler. You can then edit the chapter2.lis file to see what those errors are and how to fix them.
	The script utility is a public domain program provided to us by the author Doug Graham. Thanks Doug! For more information about this utility check the C:\DJGPP\CONTRIB\SCRIPT directory for documentation and source code.

Pointers
Pointers are variables that point to other variables. They point to other variables by containing an address of the other variable. Much as a an address book holds the address of a friend or acquaintance.
Arrays are one way for the computer to keep a simple list. An example of a list might be a grocery list or a list of phone numbers. Arrays in C are made from pointers.
Why are pointers important?
Speed: The true speed of C/C++ is only available to programmers who use pointers effectively.
Size: Programs that use pointers effectively will use less memory than another program that does not.
Ever-present: You can not avoid using pointers in C/C++. Even if you do not think you are using them, everything in C/C++ has and uses pointers.
Severe Errors: Since you cannot avoid using pointers, you can get severe and mysterious errors by not understanding them.
The bottom line is this: Your career as a C/C++ programmer depends on understanding and using pointers. Pointers are an integral part of the C/C++ language, they are the most powerful feature of C from which C++ is derived.
You Can Learn Pointers!
They are EASY when you know how! Much like walking and talking it can become second nature.
Pointers are much simpler than you think! Most people think they are very complex, but that is only because they did not read this book!
Just the facts Mam, the facts about Pointers!
* The “pointed at by” operator
Say “Pointed at by” whenever you see *. It’s real name is “unary indirection operator”. Unary since it operates on only one variable at a time. Indirection since it points elsewhere.
Declaring a pointer
int *a;

The above statement would declare that integers are “pointed at by” a. In other words a is a pointer to integers. Now since everything in C/C++ has pointers you can use any type of variable not just int. You can use float, char, and any type that you make up since C/C++ lets you make up your own types.
& the “address of” operator
Say “address of” whenever you see &. It’s real name is the “unary address operator”.
Pointing a pointer at something
To point a pointer at something you must have a pointer and something to point at. So the next two commands declare an integer ‘j’ and a integer pointer ‘a’.
int j=0;
int *a;

The next statement points a at j.
a=&j;
Remember to say “address of” where the & is. So you could read the statement as:
 a equals the “address of” j.
The next statement sets j to 10.
*a=10;
Remember to say “pointed at by” where the * is. So you could read the statement as:
The variable “pointed at by” a equals 10.
The Pointer1.cc Program
Here is a little program to illustrate a simple pointer and it’s effects using the * and the & operators.

#include <iostream.h>

void main()
{
 int j=0;
 int *a;

 cout<<"This is a test program for pointers!"<<endl;
 cout<<"The integer variable j = " << j << endl;
 a=&j;
 *a=10;
 cout<<"The integer variable j = " << j << endl;
}

This file is in the chapter 2 directory and is in the pointer1.cc program file. Here is an example of the output produced by the program.
C:\C\CHAPTER2>go32 pointer1
go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
This is a test program for pointers!
The integer variable j = 0
The integer variable j = 10

C:\C\CHAPTER2>

Pointers, the rest of the story
A little history
In the beginning there were pointers, then as programming languages became slightly more sophisticated in the 1950’s, arrays came about with languages like FORTRAN and eventually BASIC. Many programmers forgot about pointers until Pascal arrived on the scene in the ‘70’s. Now, with C/C++ pointers are back and arrays are merely simulated. Perhaps to fool you the C/C++ languages do have array variables, but they are really pointers in disguise.
Memory Addresses
A memory address is a number that is the address of a location in memory. Each memory location starting with the very first one is assigned a number. These numbers start from 0 and increase by one for each location in memory for however much memory you have. For example, in 8 megabytes of memory you could use the following formula to calculate the number of bytes of memory available.
(8 megabytes) * (1024 kilobytes/megabyte) * (1024bytes/kilobyte) = 8,388,608 bytes
However, the last location in memory is 8,388,607 since the computer starts counting from 0.
Pointers defined more completely
Pointers are really made up of two parts.
The memory address:
This part of the pointer is changeable, a pointer is a variable whose content is a memory address. The actual numerical memory addresses, or pointer values themselves are not important for our purposes since the computer will take care of them for us. What is important is how these pointers are used. Pointers are used in the same way you might hold your finger up to a page of text while glancing away; they keep your place for you while your attention is elsewhere.
The size:
This part does not change, a pointer also contains the size of what it is supposed to point to. If the pointer is an integer pointer the size is 4 bytes. If the pointer is a black cat or a spread sheet pointer the size may be much larger.
Pointers and Black Cats or other objects
This black cat example is a running example for the next several explanations.
In the following example you can substitute int, float, char or any valid data type for black_cat which is used in the example. This substitution can include any variable types that you may define on your own, such as monsters in a game or spread sheets in an accounting program.
The diagram below shows a box which represents the entire contents of computer memory. Inside the box is another smaller box labeled a_pointer which represents the pointer named a_pointer. The black cats are labeled a_value, and b_value which represent the variables a_value and b_value, both of which are of the variable type black_cat. The depicted situation would result from the following declarations.
black_cat a_value, b_value, *a_pointer=NULL;

�
Figure 1 : Memory, case 1.
Null Pointers
Null pointers are pointers with a value of NULL. So being a NULL pointer is a temporary condition since later the pointer variable can be assigned another value. NULL is used in most C/C++ programs to denote that the pointer in question does not yet have a valid value.
The above figure 1 represents all of memory; the arrow pointing to the top left of the box corresponds to the value 0 or NULL.
Now, by placing the * before the variable name a_pointer, we declared a_pointer to be a pointer to the type black_cat. By initializing a_pointer to NULL, we have pointed a_pointer to the beginning of memory.
We should never actually use a value of NULL since both the CPU and the operating system reserve that location in memory.
Assigning a Null pointer a new value
The next statement changes the value of a_pointer by assigning the memory address of a_value. By changing the value of a_pointer we are drawing one of the computer’s many figurative fingers on the memory space where a_value is kept.
	a_pointer = &a_value;
�
Figure 2: Memory, case 2

In this case the & before the variable name a_value caused the address of a_value to be placed into a_pointer. The actual value contained in a_value is not copied into a_pointer. The pointer holds the address of a space in memory, not the actual value in that memory space.
This may seem obvious in the case of black cats, but it is just as true for integers or floating point numbers.
Memory Allocation
Memory Allocation is a term to describe how a computer assigns memory for a purpose.
Here are some examples:
When you declare a variable the compiler allocates space in memory to hold the variable.
When you write a main function the compiler allocates space in memory to hold the program code.
When you use pointers they also have memory allocated to hold the memory address and size of what it is supposed to point to.
An error many programmers make is to point a pointer at someplace in memory that is not allocated or is allocated for something other than what was intended. The way to avoid this error is to think about how memory is allocated when using pointers. An extended example is shown in the section titled “A common error with pointers”

Pointer Math
You can add or subtract numbers from a pointer. Remember that pointers have two parts, the memory address and the size. When you add a number to a pointer you are changing the memory address by multiples of the size. In other words adding 1 to a pointer really adds (1 * size) to the memory address.
Type Casting
Type casting is a way in C to change one type of variable into another type of variable. This works on both pointers and other variables. However there are some things to watch for.
For example we define two variables and an integer pointer.
 int j;
 float pi=3.1415927;
 int *integer_pointer;
Next we assign the integer pointer to point at the integer variable j, and assign a value of 10 to j.
 integer_pointer=&j;
 *integer_pointer=10;
Every thing here is copacetic the following print prints out what we would expect, j=10 and pi=3.14…
cout << "The integer j="<<j<<" the float pi="<<pi<<endl;

The integer j=10 the float pi=3.14159

Now we try out our type casting! Here what we are doing is converting the floating point value of pi to an integer value and putting the result into j. The type cast is the part inside parentheses where we tell it what to convert the value to before assigning it to j.
*integer_pointer=(int)pi;
You can read the above statement as follows:
The location “pointed at by” integer_pointer equals (convert to int) pi.
The result is that j=3, truncated since integers do not hold the digits after the decimal point, and pi is still unchanged since pi=3.14…
cout << "The integer j="<<j<<" the float pi="<<pi<<endl;

The integer j=3 the float pi=3.14159

Next we try type casting a pointer.
 integer_pointer=(int *) π
You can read the above statement as :
 integer_pointer equals (convert to integers “pointed at by”) “the address of” pi
Now what exactly does this mean!?
Lets take this apart and examine each part.
&pi This gets “the address of” pi. The address of pi is of type float * or a float pointer. Now float pointers are different than integer pointers. So you cannot assign the float pointer value to an integer pointer without a conversion.
(int *) This performs the integer pointer conversion. The value following the (int *) is converted to type int * or an integer pointer.
Integer_pointer is assigned the converted pointer value.
This next statement assigns 10 to pi as an integer.
 *integer_pointer=10;
The compiler treats this just as if it were assigning 10 to an integer like j. Since the type of integer_pointer is an int * or a pointer to integers and 10 is an integer, the compiler assumes that whatever integer_pointer is pointing at is an integer!
However we just went though a type conversion to get integer_pointer to point at a float variable. The results are below.
cout << "The integer j="<<j<<" the float pi="<<pi<<endl;
The integer j=3 the float pi=1.4013e-44
Egads you say what happened to pi? That does not look like 10 to me!
What happened is a memory overwrite error. Don’t do this! Integer pointers should only point to integers not floats or longs or doubles or black_cats.
Here is the whole program typecast.cc
#include <iostream.h>

void main()
{ int j;
 float pi=3.1415927;
 int *integer_pointer;

 integer_pointer=&j;
 *integer_pointer=10;
 cout << "The integer j="<<j<<" the float pi="<<pi<<endl;
 *integer_pointer=(int)pi;
 cout << "The integer j="<<j<<" the float pi="<<pi<<endl;
 integer_pointer=(int *) π
 *integer_pointer=10;
 cout << "The integer j="<<j<<" the float pi="<<pi<<endl;
}
Here is the run of this typecast program.
C:\C\CHAP2>go32 typecast

go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
The integer j=10 the float pi=3.14159
The integer j=3 the float pi=3.14159
The integer j=3 the float pi=1.4013e-44

C:\C\CHAP2>

A common error with pointers
This next statement makes use of the increment operator which means to increase the value of a variable by 1. When it comes to pointers though, we increase the address location of the pointer by the size of the variable type. Since there is a separate pointer for each variable type, the pointer size will vary as well. For example since our variable type is black_cat, then the compiler will increase, or move, the pointer by one black_cat. The pointer would then point to the next black_cat in memory.
 black_cat a_value,b_value *a_pointer; //Define variables
	 a_pointer=&a_value; // a_pointer points at a_value
 a_pointer++;	 // increase by 1

�
Figure 3: Memory, case 3
Notice however that by increasing a_pointer by one from a_value did not point the pointer at b_value. Just because they are defined in the same statement one after another does not mean they will be side by side in memory.
There is not really another cat in memory, there really is only a_value and b_value. At this point, however, the compiler has already been instructed to increase a_pointer by one black_cat. The compiler would assume that it is pointing at another black cat when in fact, something else might be there.
Perhaps the true situation might be the one depicted below.
�
	Figure 4: Memory case 4
You might have problems if you treat a gorilla like a black_cat. So don’t try it! You would have a_pointer pointing to data that is not of the expected type. If you further complicated this state of affairs by trying to write data to that point, serious confusion would result.
To be more specific if the memory space you wrote to contained a subpart of your program, for example some complex variable like a gorilla, then your gorilla would stop working. The error that caused your gorilla subroutine to stop working would be caused by black_cat’s (who have nothing to do with gorilla’s). You might find yourself staying up late furiously fretting about your poor gorilla that works just fine until it apparently arbitrarily stops for no good reason. If you were a good detective, after hours of work you might notice that the black cats had something to do with your errors, and finally track your problem to that of pointing to gorillas instead of black cats.
The following statement would cause the error described above and illustrated below.

*a_pointer = b_value; // ERROR copy b_value into a_pointer
			 // Which is pointing to a gorilla
						
�
Figure 5: Memory with Overwrite error
That black_cat just copied on top of the gorilla would work just fine, but the gorilla would fail. The * before a_pointer instructs the compiler to copy data into where the pointer is pointing. Here, while the pointer is accomplishing its primary function of pointing to a memory address, it is also being used to copy data into that memory space. In the process, the black cat data gets written into memory space used by gorilla data.
Assuming that we did not make the errors illustrated above, then the following statements would copy the black cat to a new place that is compatible to black cat data.
a_pointer = &a_avalue; // set a_pointer to point to
 // a_value
b_value = *a_pointer ; // copy the value pointed to by
				 // a_pointer into b_value
�
Figure 5: Correct way to copy.

Arrays
Knowing how pointers work we can now accurately describe arrays. Arrays are pointers that are defined in the following way.
int array[20];

You can assign the first two values in the array a value as shown below.
array[0]=1;
array[1]=1;

Notice here again the computer starts counting from 0 not 1.
Also you could have done the same assignment as follows.
*array =1;
*(array+1)=1
The following is a simple program to print the fibonacci sequence of numbers. The fibonacci series is defined as 1, 1, 1+1, 1+2,2+3,3+5,5+8…
#include <iostream.h>

void main()
{ int array[20];
 array[0]=1;
 array[1]=1;
 cout<<"This is a array program"<<endl;
 cout<<" This program prints the"<< endl
 <<" fibonacci sequence"<<endl;
 cout << array[0]<<" "<<array[1]<<" ";
 for (int i=1;i<20;i++)
 { array[i]=array[i-1]+array[i-2];
 cout << array[i]<<" ";
 }
 cout << endl;
}
The following is the output produced by the above program array.cc
C:\C\CHAPTER2>go32 array

go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
This is a array program
 This program prints the
 fibonacci sequence
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946

C:\C\CHAPTER2>
There is nothing to stop you from writing or reading from past the end of an array. If we wrote a statement like array[20]=1; The compiler would put the 1 in as if there was a position number 20. But there isn’t, the array has positions 0 - 19 not 20. This would be another variation on the all to common memory overwrite error.

Arrays of Higher Dimension
Array’s can be multidimensional. A one dimensional array is like a list. A two dimensional array is like a table, or a list of lists. A three dimensional array is like a room, or a list of tables, or a table of lists. And so on ad infinitum.
Use of tables are quite common, for example determining the outcome of a game event might be based on such a table:
 //Die Roll 0 1 2 3 4 5 Def Adj
int hit[7][6]={ { 0, 0, 0, 0, 0, 0 }, // 0
 { 1, 0, 0, 0, 0, 0 }, // 1
 { 1, 1, 0, 0, 0, 0 }, // 2
 { 1, 1, 1, 0, 0, 0 }, // 3
 { 1, 1, 1, 1, 0, 0 }, // 4
 { 1, 1, 1, 1, 1, 0 }, // 5
 { 1, 1, 1, 1, 1, 1 } // 6
 };

The above line would declare a 7 by 6 array of integers which could be interpreted as the table shown below.
Hit Table
	Hit table		Die Roll
Defensive adjustment�1�2�3�4�5�6��0�miss�miss�miss�miss�miss�miss��1�miss�miss�miss�miss�miss �miss��2�hit�miss�miss�miss�miss�miss��3�hit�hit�miss�miss�miss �miss��4�hit�hit�hit�miss�miss�miss��5�hit�hit�hit�hit�hit�miss��6�hit�hit�hit�hit�hit�hit��Where hit might equate to the value 1 and miss might equate to 0.
Here is an example program using this array to calculate hits and misses.
#include <iostream.h>
#include <stdlib.h>
int die_roll();
void main()
{ //Die Roll 0 1 2 3 4 5 Def Adj
 int hit[7][6]={ { 0, 0, 0, 0, 0, 0 }, // 0
 { 1, 0, 0, 0, 0, 0 }, // 1
 { 1, 1, 0, 0, 0, 0 }, // 2
 { 1, 1, 1, 0, 0, 0 }, // 3
 { 1, 1, 1, 1, 0, 0 }, // 4
 { 1, 1, 1, 1, 1, 0 }, // 5
 { 1, 1, 1, 1, 1, 1 } // 6
 };
 int six_sided_die, i, def;
 int number_hit=0;
 srandom(time(NULL));
 for (def=0 ; def<7 ;def++)
 { for (i=0 ; i<100 ;i++)
 { six_sided_die= random()%6;
 if (hit[def][six_sided_die])
 number_hit++;
 }
 cout <<"With defensive adjustment of "<<def <<endl;
 cout <<" you got "<<number_hit<<" out of 100 "<<endl;
 number_hit=0;
 }
 }
// Generate random numbers from
// 0 to 5 instead of 1 to 6
// since the array subscripts start
// at 0 instead of 1.
Here is how to get a random number. We #include <stdlib.h> to use the random function. The die roll uses the random function. six_sided_die= random()%6; The random function returns a random number from zero to the largest integer value possible. The % is a modulus divide statement. It divides the random number by 6 and returns the remainder from the division. The highest remainder from this division is 5 the lowest is 0. The srandom function seeds the random number generator. Using srandom(time()); causes the time of day to seed the random number generator.
The following is the output of this program.
C:\C\CHAP2>go32 arrary2d

go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
With defensive adjustment of 0
 you got 0 out of 100
With defensive adjustment of 1
 you got 18 out of 100
With defensive adjustment of 2
 you got 34 out of 100
With defensive adjustment of 3
 you got 51 out of 100
With defensive adjustment of 4
 you got 70 out of 100
With defensive adjustment of 5
 you got 88 out of 100
With defensive adjustment of 6
 you got 100 out of 100

C:\C\CHAP2>

Character Arrays
The character array is a group of characters in sequence. Character arrays can hold sentences or strings. A sequence of characters is often referred to as a string of characters or just string. The below line declares a variable “a_character_array” that is initialized to contain the String “This is a String”. The double quotes around the sentence indicate that it is a character array and not just a single char.

	char *a_character_array="This is a String";

Character arrays however are not like strings in other languages, in some respects. The most important of which is in its use of memory.
The data type we are using here is a character pointer. You can identify the fact that it is a pointer by the * before its name in the declaration.

�

You can think of each little box as a memory cell of the computer’s memory. The ‘\0’ at the end is a special character called NULL. It’s ASCII code value is 0 and is used to mark the end of a String.

	cout << "A Character Array : "
		<< a_character_array << endl << endl;
				
	cout << "A character element (number 1) : "
		<< a_character_array[1] << endl << endl;

The above lines of code create the below lines of output. The first 2 lines contains one C++ statement since each statement ends at a semi-colon. The first statement moves the phase “A Character Array : ” to the output stream (Shown below) followed by the contents of a_character_array which is “This is a String” followed by two endl’s to provide a blank line in the output stream before the next statement is executed. The next statement shows the syntax for accessing a single character of the array. The brackets at the end of the variable name as in “a_character_array[1]” are used to indicate which element of the array to use. In this case a 1 is used printing the ‘h’, which is the second character in the array. The reason for this is that C++ counts from zero instead of one, the ‘T’ would be retrieved from the array by “a_character_array[0]” instead.

A Character Array : This is a String

A character element (number 1) : h

The below line declares a character pointer as we did before but this time it does not have a String. It is initialized to NULL or 0 since we used the define statement to define NULL as 0. Since that value is obviously invalid it is a good number to use. Why? because if we check the value of a pointer and see that it is Null then we can know that it is invalid.

	char *char_pointer=NULL;

The next section of code:

	char_pointer = a_character_array;
	cout << "A Character Pointer : "
		<< char_pointer << endl << endl;

	shows the char_pointer being assigned the value of a_character_array. What this does is diagrammed below.

�

	The String is not copied, instead both pointers, a_character_array and char_pointer point to the same place, to the String “This is a String”. The cout statement then produces the following output:

A Character Pointer : This is a String

	Notice how the character array is virtually indistinguishable from a character pointer. That is because they are the same. The only difference is in how we think about them.
	The full program is shown below.

// File : strings.cc
//
// Demonstrate character pointers and arrays.
//
#include <iostream.h>
#define NULL 0
main()
{
	// define a character array and a character pointer

	char *a_character_array="This is a String";
	char *char_pointer=NULL;

	// Print a Character array with a message.

	cout << "A Character Array : "
		<< a_character_array << endl << endl;
				
	// Print a Single Character from a character array.

	cout << "A character element (number 1) : "
		<< a_character_array[1] << endl << endl;

	// Use a character pointer to print a character array.

	char_pointer = a_character_array;

	cout << "A Character Pointer : "
		<< char_pointer << endl << endl;
}

Are You Experienced?
Now you can:
Use pointers with confidence.
Avoid common mistakes with pointers.
Explain pointers to your friends.
Use single and multidimensional arrays.
Use character arrays.
Chapter 3 : Functions and Data
Inside chapter 3
Function Calls
Enumerated Types
Structures
Manipulating Structures
Functions Calls
In C++ function are subprograms or sub-procedures that can return a value. A function can be viewed as simply a set of instructions that performs a given task.
A function has a name that identifies it, a type for its return value, and it’s parameters and their types.
Function Libraries
As you might imagine if we can write functions in C/C++ other people can too. And since C/C++ has been around a while there might be a good number of functions available in libraries for us to use.
I just checked the info program for functions in the standard C library. There are about 400 entries in its alphabetical list of functions. You can use the info program to learn about some of these functions they are listed in Functional Categories, by an Alphabetical list and by an Index.
[fig 3-1]
For more information on library functions in the standard C library, use INFO Program : [g(libc.i)Top] See Appendix B on how to use the info program.
Function Prototypes
A function prototype is a way of saying that there will be a function like this one defined later. Why would you want this? So that you can use the function in your program before the function is actually included in your program. In the function prototype all the parameters are shown with their types. In this example a, and b are the parameters and their types are integer. The “int” at the beginning of the function prototype indicates that the function will return an integer value.
 The line below is a function prototype:
int add_integers(int a, int b);	// Function Prototype

The name of the function “add_integers” is also given by the function prototype.
In this next line the function “add_integers” is called and its return value is copied into the variable named “result”. The values of “first_number” and “second_number” are passed to the function “add_integers”.
result = add_integers(first_number , second_number);
[fig 3-2]
Function prototypes for function libraries are usually in the header file for the library. For example we #include <stdlib.h> to use the random function in chapter 2.
Declaring a Function
Below is the function definition for add_integers:
//
// A simple function
//
int add_integers(int a, int b)
{
	return (a + b);
}
[fig 3-3]
Function Call Example Program
The following program illustrates a simple function call.
[fig 3-4]

// File : Func.cc
//
// An example of function calls in C++
//
#include <iostream.h>

int add_integers(int a, int b);	// Function Prototype

void main()
{
	int first_number, second_number, result;

	first_number = 2;
	second_number = 4;

	cout << “Adding “ << first_number
		<< “ and “ << second_number
		<< endl ;

	result = add_integers(first_number , second_number);
	
	cout << “The result is “ << result
		<< endl;
}
//
// A simple function
//
int add_integers(int a, int b)
{
	return (a + b);
}

The output of the above program :

C:\C\CHAPTER3>go32 func
go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
Adding 2 and 4
The result is 6

C:\C\CHAPTER3>
Implicit and Default parameters
Implicit parameters are parameters that are supplied when the function is called. Default parameters are optional in the function call. They have default values that are used when ever the function is called without values in the call.
[fig 3-5]
Function Prototypes For default Parameters
The function prototype for a function using default parameters can contain the default values for those parameters that are optional. The default parameters must be the last parameters in the list of parameters for the function.
 The line below is a function prototype:
int simple(int a, int b, char operation='a');
// ---------------------------^^^^^^^^^^^^^ Default values

The line below is a function call to the simple function without a value for operation
	cout << "The value of simple(5,5) = "
and with.
		<<simple (10,5,'m') << endl;
the function definition for simple:
int simple(int a, int b, char operation)
{	if (operation='a')
		return (a + b); // operation a for add
	else
		return (a - b); // operation anything else subtract.
}
and the corresponding output of the function calls:
The value of simple(5,5) = 10
The value of simple(10,5,'m') = 5

Here is an example:

// File : default.cc
//
// Example of default parameters in C++
//
#include <iostream.h>
//
// Function prototypes
//
//
int simple(int a, int b, char operation='a');
// ---------------------------^^^^^^^^^^^^^ Default values
//
int something(int a=0, int b=0, char operation='a');
// ---------------^^^------^^^-------^^^^^^^^^^^^^ Default Values
//
void main()
{
	cout << "The value of simple(5,5) = "
		<< simple(5,5)<< endl;
		cout <<"The value of simple(10,5,'m') = "
		<<simple (10,5,'m') << endl;
		cout << "The value of something() = "
		<< something() << endl;

	cout << "The value of something(5,5) = "
		<<something(5,5) << endl;
	
}
// simple is a function with one default parameter
// the variable operation defaults to 'a'
//
int simple(int a, int b, char operation)
{	if (operation='a')
		return (a + b); // operation a for add
	else
		return (a - b); // operation anything else subtract.
}
// something is a function with all three default paramters
//
int something(int a, int b, char operation)
{	if (operation='a')
		return (a + b); // operation a for add
	else
		return (a - b); // operation anything else subtract.
}

These default parameters must be the last parameters in the list of parameters to the function, as is each of the above examples. The first function “simple” has the variable “operation” as a default value of ‘a’ for add. The second function “something” has all of it’s variables as default values. This means that “something” can be called with nothing as in “something()”. Below is the output of the above example:

C:\C\CHAPTER2>go32 default
go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
The value of simple(5,5) = 10
The value of simple(10,5,'m') = 5
The value of something() = 0
The value of something(5,5) = 10

C:\C\CHAPTER2>

Parameter Passing by Reference and by Value
Passing by value is to copy the value of a parameter and sending that copy instead of the actual variable. When passing by value then the called function cannot change the value of the parameter sent. The called function can only change its copy of that parameter.
Passing by reference means to pass the address of the parameter so that if the called function changes the value then the change is also returned when the function returns. This is accomplished in C/C++ by passing the pointer or address of the variable being sent. In other words the address is sent by value and effectively the variable who’s address was sent is passed by reference.
Function parameters are usually passed by value. However you can, specify by reference when you need to.
[fig 3-6]
Function Prototypes by value and by reference
These are function prototypes for our example. In the by value version the parameter is passed by using the integer type. In the by reference example the address of the integer is passed instead.
int by_value(int a);
int by_reference(int *a);
Function Calls by value and by reference
As you might expect in the by value version of the function call you pass the integer. In the by_value function call the value of the integer is copied and sent to the by_value function. In the by_reference function call the address of the integer is copied and sent to the by_reference function.
	by_value(a);
	by_reference(&a);
Function Definitions by value and by reference
The two functions by_value and by_reference appear to do the same thing however since the parameters are passed differently they have different results.
In both functions they each get a value for the integer a that was passed.
In the by value function the integer a inside the by value function is not the same one passed in the function call. Instead the integer a in the by value function is a copy of the integer a used in the function call. Thus when the by value function changes the value of a by setting it to 10, only the copy of a is changed. Inside the function when a is printed it prints out the value 10. But when the function returns the value of a in the calling function main remains unchanged.
int by_value(int a)
{
	a=10;
	cout << "In by value a = " << a << endl;
}
In the by reference function the address of integer a is passed. So when *a is changed what gets changed is the variable “pointed to by” a, which is the integer a in the main function. Thus when the by reference function changes the value of *a by setting it to 10, the integer a in the main function is changed. Inside the function when a is printed it prints out the value 10 and when the function returns the value of a in the calling function main is still changed.
int by_refrence(int *a)
{
	*a=10;
	cout << "In by refrence a = "<< *a << endl;
}

By Reference and By Value Parameter Passing Program :

// File : pass.cc
//
// Example program of passing parameters by value and by
// reference.
//
#include <iostream.h>
int by_value(int a);
int by_reference(int *a);
	
void main ()
{
	int a=55;
	cout << "1. In main a = " << a << endl;
	by_value(a);
	cout << "2. In main a = " << a << endl;
	by_reference(&a);
	cout << "3. In main a = " << a << endl;
}
int by_value(int a)
{
	a=10;
	cout << "In by value a = " << a << endl;
}
int by_reference(int *a)
{
	*a=10;
	cout << "In by reference a = "<< *a << endl;
}

Output of the pass.cc program is shown below :

C:\C\CHAPTER3>go32 pass
go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
1. In main a = 55
In by value a = 10
2. In main a = 55
In by reference a = 10
3. In main a = 10

C:\C\CHAPTER3>
Function pointers : using them to sort arrays
Do you remember in chapter 2 where we said “…everything in C/C++ has and uses pointers.” Well functions are no exception. Do you remember that arrays are pointers that are defined using array subscripts and that the name of the array is the pointer to the array. Well functions are the same way the name of a function is a pointer to the function.
[fig 3-7]
What’s the point? Aren’t we getting a little far fetched here? Why bother having a pointer to an array or for functions? What use is all this!?
As it happens, there are some very good reasons for all these pointers. The reason is speed and flexibility.
The c library function qsort can sort arrays for us. This function needs array pointers and function pointers in order to work. The qsort function takes four parameters to operate. They are:
A pointer to the array to sort. Since qsort will work on any array of any type or size the array pointer must be of type void.
The number of elements in the array. To prevent reading or writing past the end of the array.
The size of the element(s) to be sorted. Since qsort uses a void pointer and the void pointer does not have a size with it you must tell it the size of what is to be sorted.
A pointer to the function that can compare the elements of the array. Since qsort can sort any array it does not know how to compare two elements, since it does not know what kind of data is in the array.
The first thing we need to call qsort is a pointer to the array to sort. So then here is an array to sort.
double list[5] = { 3.14,4.3,5.5,1.2,3.9 };

So the pointer to this array is the array name list. However, the pointer must be of type void *. So we can type cast it using (void *) list.
The second thing is the number of elements in the array which we happen to know is 5.
The third thing is the size of the elements to be sorted which is given by a function in C called sizeof or sizeof(list[0]) which returns the size of the first row, or the size of a double.
Last but not least the function pointer. Here is a function prototype, and since the name of a function is a pointer to the function we have both defined a function and it’s pointer.
int sort_function(const void *a, const void *b);
For the sort function to work with the qsort function it must return an integer number with one of three possible values.
Less than 0 meaning that the first value is less than the second one.
Equal to 0 meaning that the first value is equal to the second one.
Greater than 0 meaning that the first value is greater than the second one.
The function definition for our sort_function is:
int sort_function(const void *a, const void *b)
{ const double c=*(double *)a - *(double *)b;
 if (c>0) return 1;
 if (c<0) return -1;
 return 0;
}
To put it all together here is how we call qsort.
qsort((void *)list, 5, sizeof(list[0]), sort_function);

Example Qsort program
#include <iostream.h>
#include <stdlib.h>
#include <string.h>

int sort_function(const void *a, const void *b);

double list[5] = { 3.14,4.3,5.5,1.2,3.9 };

int main(void)
{ int x;
 cout <<"Q Sort Program -- Sorting arrays" <<endl;
 cout <<" Unsorted array " << endl;
 for (x = 0; x < 5; x++)
 cout <<list[x]<<endl;
 qsort((void *)list, 5, sizeof(list[0]), sort_function);
 cout <<" Sorted array " << endl;
 for (x = 0; x < 5; x++)
 cout <<list[x]<<endl;
 return 0;
}

int sort_function(const void *a, const void *b)
{ const double c=*(double *)a - *(double *)b;
 if (c>0) return 1;
 if (c<0) return -1;
 return 0;
}
The output of the Qsort program is shown below:
C:\C\CHAPTER3>go32 qsort

go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
Q Sort Program -- Sorting arrays
 Unsorted array
3.14
4.3
5.5
1.2
3.9
 Sorted array
1.2
3.14
3.9
4.3
5.5

C:\C\CHAPTER3>

Using Qsort to sort multiple dimension arrays.
We did say that qsort can sort any type of array so lets try a two dimensional array. The changes we make will allow us to sort a two dimensional array by any column. I think you might now begin to understand how flexible this system of pointers can be.
[fig 3-8]
#include <iostream.h>
#include <stdlib.h>
#include <string.h>
int sort_function(const void *a, const void *b);

double list[5][2] = { {3.14,9.9},
		 {4.3,83.2},
		 {5.5,3.2},
		 {1.2,93.2},
		 {3.9,29}
		 };
int main(void)
{ int x;
 cout <<"Qsort Program 2 Dimentions-- Sort on 2nd Column"<< endl;
 cout <<" The Unsorted array"<<endl;
 for (x = 0; x < 5; x++)
 cout <<list[x][0]<<"\t"<<list[x][1]<<endl;
 qsort((void *)list, 5, sizeof(list[0]), sort_function);
 cout <<" The Sorted array"<<endl;
 for (x = 0; x < 5; x++)
 cout <<list[x][0]<<"\t"<<list[x][1]<<endl;
 return 0;
}

int sort_function(const void *a, const void *b)
{ const double c=*(((double *)a)+1) - *(((double *)b)+1);
 if (c>0) return 1;
 if (c<0) return -1;
 return 0;
}

Enumerated Types
Computer languages in general are a way of converting between human thought and machine thought. Where people think in words and ideas and computers think in numbers. So then we have enumerated types which is a way of converting written words to numbers.
The idea is simple and is useful for making a program more readable.
Defining an enumerated Type
To define an enumerated type you use the “enum” keyword followed by the name of the type and a list of words separated by commas enclosed in { }’s .
enum colors {red, green, blue, yellow, purple};

What happens when you define an enumerated type is that every word in the list of words is assigned a number. Then when you type the word the number is associated with it along with the type name. For example if you create a enumerated type of colors and use a color like green. The word green gets replaced by 1 since it is the second number (the computer all ways count from 0) in the list along with the fact that it is a color and not say another enumerated type.
You don’t really see the numbers and so can think of the meaning of the words, and the computer will think in numbers.
Assigning values to an enumerated type
In this statement we are assigning values to the variables c and d which are declared as enumerated type color. To assign values we can use the words from the list and numerical values will be assigned behind the scenes.
 c=red;
 d=green;

Comparing enumerated type values
Since there are numbers inside the enumerated types any comparisons like the one below will use the numbers of the enumerated type from the order in which they are listed to determine which is greater or lessor than another.
 if (c<d)
 cout << "red is less than green"<< endl;
 else
 cout << "green is less than red"<< endl;
The line printed by the above code is shown below.
red is less than green

Enumerated type example program
#include <iostream.h>
void main()
{
 enum colors {red, green, blue, yellow, purple};
 colors c,d;
 c=red;
 d=green;
 if (c<d)
 cout << "red is less than green"<< endl;
 else
 cout << "green is less than red"<< endl;
 cout <<"red is really an integer ="<< (int) red << endl;
 cout <<"green is realy an integer ="<< (int) green <<endl;
}
The following is the output generated by the above program.
C:\C\CHAPTER3>go32 enumtyp

go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
red is less than green
red is really an integer =0
green is realy an integer =1

C:\C\CHAPTER3>

Structures
Every programming language has some form of structure that allows you to define a complex data type. In some languages this might be referred to as records, in C++ this it is called a Structure. A Structure can contain several data types together to form another aggregate data type.
When you declare a structure what you are doing is really defining the structure. Once you have created a definition for the structure you can use this definition to create variables.
[fig 3-9]
Declaring a structure
The key word “struct” is used to define a new structure. Following this keyword is the name of the structure.
Following the keyword “struct” and the name of the structure is a block starting with { and ending with }. Inside the block you can define variables that are to be part of the structure.
Here is an example definition of a structure.
	// declaration of structures
	
	struct Person
	{
		float height; // in feet
		float weight; // in pounds
		char *name;
	};
Keep in mind that the above declaration does not create any variables or structures. What it does is define the structure not create one.
Creating an instance of the structure
To create a structure is to “instanciate” a variable of the structure type or an “instance” of the structure. This same terminology for instanciating an instance of a structure will apply to classes in the next chapter as well.
There is more than one way to create / instanciate a structure once you have defined it. One way is to declare a variable using the structure name as if it were a type definition as shown below.
	Person John;	// Define a variable of type Person
Accessing the internal parts (members) of a structure using the “.”
You can use the “.” Operator called the “member access direct de-reference” operator.
The direct part means that you are using the a variable of the structure type itself to access the members and not a pointer to the structure. The variables inside the structure are called the members of the structure.
	John.height = 6.2 ;		// Assign initial values
	John.weight = 170 ;
	John.name = "John Doe" ;
If you need to use a pointer use the “->” operator which is the “member access indirect de-reference” operator. I.E. person_pointer->height See the next section on Manipulating structures.
Structure example program
// File : Struct.cc
//
// This program is a demonstration of Structures.
//
#include <iostream.h>
void main ()
{
	// declaration of structures
	
	struct Person
	{
		float height; // in feet
		float weight; // in pounds
		char *name;
	};
	
	Person John;	// Define a variable of type Person

	John.height = 6.2 ;		// Assign initial values
	John.weight = 170 ;
	John.name = "John Doe" ;

	cout << "This person is " << John.name
		<< endl;
	cout << " Height = " << John.height << " feet"
		<< endl;
	cout << " Weight = " << John.weight << " pounds"
		<< endl;
}

The following is the output of the above program.

C:\C\CHAPTER2>go32 struct
go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
This person is John Doe
 Height = 6.2 feet
 Weight = 170 pounds

C:\C\CHAPTER2>

Manipulating Structures
You can do many things with structures, you can pass them to functions and you can arrange them in lists. There are entire college classes devoted to playing around with structures called “Data Structures”. Here we will show you a few of the basics. We will do more of this sort of manipulation later using classes.
Passing a structure to a function
The best way to pass a structure to a function is to use a pointer or by reference. You could copy the structure and send it to a function that way, however copying a structure is not efficient and can slow your program if you do that often. This is because structures can contain relatively large amounts of data that would need to be copied.
You need to define the structure BEFORE your function prototype
This is so that the compiler knows what the structure is before you first refer to it in the function prototype. Since we want to write a function that uses the structure the definition for the structure must come first.
The function prototype
Here we do our normal pointer passing for a structure called “Person”.
void print_person(Person *p);
Instanciate our structure variables
So that we have them inorder to pass them to our function.
Person John,Mary; // Define a variable of type Person
We write our code and call the function
Our program computes along until we reach the printing of John and Mary. Notice the use of the “Address of” Operator. This is needed because as you can see from the instanciation above that John is a variable of the structure and not a pointer. So to get the pointer value to pass to the function we must use the & operator.
print_person(&John);
 print_person(&Mary);
Our function declaration
Here we define the actual printing function for a person structure. Notice the use of the “->” operator to access the structure members. This operator is the “member access indirect de-reference operator”. The “->” operator performs the same job as the “.” Operator we covered earlier. The only difference is here the “->” is used with a pointer “p” instead of a structure variable like “John” or “Mary” in the main subroutine.
void print_person(Person *p)
{
 cout << "This person is " << p->name
 << endl;
 cout << " Height = " << p->height << " feet"
 << endl;
 cout << " Weight = " << p->weight << " pounds"
 << endl;
}
The structure passing example program
// File : Passtruc.cc
//
// This program is a demonstration of Structures.
//
#include <iostream.h>
// declaration of structures
	
struct Person
{
 float height; // in feet
 float weight; // in pounds
 char *name;
};
void print_person(Person *p);
void main ()
{
	
 Person John,Mary; // Define a variable of type Person

	John.height = 6.2 ;		// Assign initial values
	John.weight = 170 ;
	John.name = "John Doe" ;
 Mary.height = 5.5 ;
 Mary.weight = 105 ;
 Mary.name = "Mary Quite Contrary";
 print_person(&John);
 print_person(&Mary);
}
void print_person(Person *p)
{
 cout << "This person is " << p->name
 << endl;
 cout << " Height = " << p->height << " feet"
 << endl;
 cout << " Weight = " << p->weight << " pounds"
 << endl;
}
Below is the output of the structure passing example program.
C:\C\CHAP3>go32 passtruc.

go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
This person is John Doe
 Height = 6.2 feet
 Weight = 170 pounds
This person is Mary Quite Contrary
 Height = 5.5 feet
 Weight = 105 pounds

C:\C\CHAP3>

Are You Experienced?
Now you can:
Create new functions.
Use functions and function libraries.
Pass parameters by reference or by value.
Use default parameters.
Use function pointers.
Create structures to hold data.
Pass the structures between functions.
Chapter 4 : Introduction to Object Oriented Programming
Key Concepts of Object Oriented Programming
The key concept behind Object Oriented Programming is Abstraction. Using Abstraction you create objects in you computer program that represent real or imagined objects. For example a cat in reality is a complex object with fur, claws, a brain, lungs, liver, a spark of life and many other things. However in a computer program we would abstract from the real object like a cat only the features of a cat that were important to our program. We would not concern ourselves with all the complex details of a real cat. It would be important though that our computer cat object behave in the same manner as we would expect a real cat to act for the purposes of our computer game. Similarly all other objects in our program would be abstractions of real or imagined objects like a flying Red Dragon or a big bouncing Gorilla.
[fig 4-1]
Classes
In C++ we have a feature of the language called “classes” which help us to perform these abstractions of reality in our program. A class is a general description of a group or class of objects.
For example you could say that the London Tower is an object of the class of objects Tower. In this example the London Tower would be an individual object, whereas Tower would be a generic description of any tower.
[fig 4-2]
Modularity and Classes
The goal of modularity is to divide up a program into small parts that are independent from each other. This can be achieved using classes. Since each class can be used to be an abstract description of a group of objects then properties of the entire class can be defined in a single place. The advantage of this modularity is that changes in your program can be localized to one section of code.
For example you wish to define a group of objects that have the ability to move. You could do this by first defining a class of moving objects. The code that does the actual movement could be included in this class description. Then each object that you wish to create could then be members of this new class. Later if you wish to change the way that all these objects move you would only need to change the code in the class description, and not in each object.
[fig 4-3]
Rules of thumb about Modularity
1. Modular Units: Use classes to modularize your code by logically separating your program into small parts.
2. Few Interfaces: To make the structure of your program beneficial you must have a small amount of linkage between the parts of your program. Keep the number of interfacing links between your objects to a minimum.
3. Small Interfaces: The modules that form your interfaces should be small as compared to the size of the bulk of your class. This way the classes will be loosely coupled; they will be linked by a small number of calls from each other.
4. Explicit Interfaces: The interface should be explicitly declared and externally visible. Since classes have public parts that can be externally seen the use this part to define the interface. This interface should be easily readable to the programmer (to understand how the program works) and to the compiler (to allow the compiler to check the programmer use of the interface).
5. Information Hiding: Every module should conceal at least one fact about its operation. For example this might be the structure of the data being manipulated. In this way the complexity of the program is hidden and the program is easier to understand.
Inheritance
Inheritance allows you to describe a specialization or subclass from an existing class. In this way you could describe “moving object that attack” from “moving objects”. You would be able to inherit the traits of the class “moving objects”, like the ability to move and add specialized features like being able to attack.
Inheritance also allows the opposite, creating a generalization from classes. As in factoring out common traits to provide a more general description. For example starting with the classes of “arcade game players” and “board game players” you could define the class “game players”.
[fig 4-4]
Polymorphism
This is a feature of the language that allows the possibility of an entity taking on many forms. Below are the two main ways in which this is used.
Same function name in different objects.
Polymorphism allows you to refer to objects of different classes by means of the same program item. Thus when a function is invoked from that program item the function would perform in the manner appropriate to the form of the object referred to by that program item.
An example of this would be to have a moving object move. If the object in question were a cat then the appropriate function would depict a cat standing and walking on four legs. However if the object in question were a flying Red Dragon then the appropriate function would depict the Dragon flapping it’s wings and moving forward.
Same function name with different parameters.
Polymorphism allows you to define a function several times each with a different list of parameters. When the function is called the version with the matching list of parameters is the copy of the function that is executed.
[fig 4-5]
Class
The Class is the construct in C++ that allow you to define objects! A class however, is not an object. A class is a category of objects like “sports car” which describes a class of cars. The individual objects are like individual cars, they each have specific properties that identify them from other objects in the same class. “My green 1967, Mustang with a 502 V-8, and four on the floor” might be a description of an individual car but “small quick flashy cars” might describe the class sports car.
Here is an example of a class from the file car.cc in the c:\c\chapter2 directory.
#include <iostream.h>
class car
{
 int top_speed;

 public :
 void set_top_speed(int speed) {top_speed=speed;}
 int get_top_speed() {return top_speed;}
};
main ()
{ car mustang;
 car corvette;
 mustang.set_top_speed(120);
 corvette.set_top_speed(150);
 cout<<"The mustang can go "<<mustang.get_top_speed()<<" mph"<<endl;
 cout<<"The corvette can go "<<corvette.get_top_speed()<<" mph"<<endl;
}
Below is the output of this program.
C:\C\CHAPTER2>go32 car
go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
The mustang can go 120 mph
The corvette can go 150 mph

C:\C\CHAPTER2>

Now for our analysis. Ever present is the include of iostream.h which allows us access to the stream class or the cout printing.
#include <iostream.h>
Next is the beginning of our class definition for the class car. The class definition starts with the key word class and the name of the class to be defined. The class is defined in the block which follows. The Block starts with the open bracket { and ends with a close bracket and semicolon };.
class car
{
After the class definition starts the first section is the private data and functions. Now that is different than the structures were. Private data, and Functions? In this example we have only data, one variable called top_speed. The ability of classes to have functions is one reason why classes are different from structures.
 int top_speed;
Everything in the class starts out private so we have to specify public when we want to be able to access functions or data from outside the class. For example from our main subroutine.
So then the public key word followed by a colon starts the public section of the class definition.
 public :
Now in the public section we can define functions. These are two very short functions written on a single line each. These functions are called inline member functions. Inline since they are defined in the class as opposed to just having a function prototype and being defined elsewhere.
 void set_top_speed(int speed) {top_speed=speed;}
 int get_top_speed() {return top_speed;}
Finally the next line ends the class definition.
};
Here then begins the main function with must be present in any C, or C++ program that runs.
main function
The main function is not a part of the class, and therefore not a member function but merely a part of the example program to test the class “car”.
main ()
{ car mustang;
 car corvette;
The two lines above instantiate two objects from the class car. Instantiation in this context is a verb meaning to create an object. Every object must have a blue print from which to be created. In the case of C++ the blueprint is the class definition.
In the next two lines we call the set_top_speed functions of the two cars. Notice that this is accomplished in a manner similar to accessing variables inside a structure. Here though instead of variables we access functions which intern set the variable top_speed. Since the variable top_speed is private we cannot access the top_speed variable directly.
 mustang.set_top_speed(120);
 corvette.set_top_speed(150);
Now having set the top speeds of our cars we can print them out using the get_top_speed functions of the cars.
 cout<<"The mustang can go "<<mustang.get_top_speed()<<" mph"<<endl;
 cout<<"The corvette can go "<<corvette.get_top_speed()<<" mph"<<endl;
}

Class Libraries
Obviously if classes are useful and can create handy code that can be used over and over again, it must follow that some one some where has written a bunch of class code that we could use. Well as it turns out this is quite true! I will cover tid bits of various class libraries already written for us to use as they become useful for examples I give to understand the various twists and turns in the world of C++. In appendix D I will summarize these various useful classes and give references to the Info Program and the text of the book its self.
[fig 4-6]
String Class
Remember from chapter 1 the stuff about pointers and character strings being more like arrays of characters rather than strings? Well this results in speed and confusion! Speed because arrays are fast and confusion because arrays don’t react the way we might wish a character string to act. The result is that programmers that are good at understanding this complexity and keeping it in mind when designing their code can write fast programs. On the other hand if you are one of those programmers who think in terms of what is the program supposed to do and concentrate on that, rather than where this or that pointer is currently pointing and where it may point later if something unexpected happens... then what you get is a fast buggy program and a lot of frustration.
With the sting class what you can do is to reduce some of that frustration, and still concentrate on what you want to accomplish rather than the details of how. Of course this does come with some overhead in terms of the processing and allocation of memory. In general though the string class is very efficient and you will probably not notice much if any difference in the performance of your programs.
OK so how do I use this String Class? As usual here is an example in code. The following program using the string class :

#include <iostream.h>
#include <strclass.h>

main()
{
 String A;
 String B("Hello World");
 String C("A very long string with a number of words");

 cout <<"String example with String Class" << endl;
 cout <<"B: "<< B << endl;
 cout <<"C: "<< C << endl;
 A=B;
 cout <<"A1: "<< A << endl;
 A=B+C;
 cout<< "A2: "<< A << endl;
}

Below is the output from one run of the string.cc program shown above.

C:\C\CHAPTER2>go32 string
go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
String example with String Class
B: Hello World
C: A very long string with a number of words
A1: Hello World
A2: Hello WorldA very long string with a number of words

C:\C\CHAPTER2>

	The first lines of the program:
 String A;
 String B("Hello World");
 String C("A very long string with a number of words");

Initialize three variables A,B, and C with the strings indicated in parentheses. Notice that A does not have an initialization string and so it will start with no value or a NIL value.
The next lines :
 cout <<"String example with String Class" << endl;
 cout <<"B: "<< B << endl;
 cout <<"C: "<< C << endl;
Print out the title and values of the strings B and C.
The line :
 A=B;
Assigns the string A with the same value as B essentially creating another copy of the string. If we had used variables of char * for these strings then the same statement would have just copied the pointer values of the strings causing A to point to the same location as B does. Instead with the String class we have the information copied not just a pointer value.
The line :
A=B+C;
Assigns the string A with the concatenation of B and C. In other words the string B is copied into A and then string C is added on to the end.
To see the real value of this here is the same program written without the string class.
#include <iostream.h>
#include <string.h>

main()
{
 char *A;
 char *B="Hello World";
 char *C="A very long string with a number of words";
 int len;

 cout << "String example without string class" << endl;
 cout <<"B: "<< B << endl;
 cout <<"C: "<< C << endl;

 // A=B would translate into
 len=strlen(B); // Dermine memory needed
 // to hold String B.
 A=(char *)malloc(len+1); // Allocate memory for A
 // to hold a copy of B.
 strcpy(A,B); // Copy B into A.

 cout <<"A1: "<< A << endl;

 //A=B+C would translate into
 len=strlen(B)+strlen(C); // Detmine memory needed
 // to hold a copy of B and C
 free (A); // Free the memory we used
 // before to prevent memory leaks
 A=(char *)malloc(len+1); // Allocate memory to hold
 // B and C in A.
 strcpy(A,B); // Copy B back into A
 strcat(A,C); // Concatinate C onto end of A

 cout<< "A2: "<< A << endl;

 // We must free the memory with A.
 free(A);
}
The above program produces the same output and performs essentially the same actions as the first program. However it is longer and more complex. This increased complexity creates a greater chance of error on the part of the programmer. Since you could forget to free a value or to allocate space for one of your strings.
In the above example we used the following functions, malloc, strcpy, strcat, free, and strlen. All of these functions are left over from the C language since C++ is a superset of C. With the features of the C++ language these low level functions are not needed so much. Feel free to look them up but be wary of their use, as it is fraught with danger. We will avoid their use in this book, I only include them here so that you know they exist in case you run across a program or programmer that still uses them.
Common parts and features of classes
In this section of the book we will tour though some of the more used parts of classes. As we develop our windowed user interface in the next chapter we will see some of the less common parts of classes.
Member functions
Member functions are simply functions that are members of a class. The functions set_top_speed and get_top_speed from our car.cc program earlier are prime examples.
[fig 4-7]
Inline Functions
[fig 4-8]
In C++ inline functions allow greater speed of execution for small functions. Typically with the rule for modularization, you want small functions for the interfaces of objects. To make these small functions faster inline functions are copied to where they are called instead of making a jump to the function. This reduces the amount of code needed to execute the small function and also increases the size of the resulting program. In larger subroutines the gain in speed is not so significant compared to the execution speed of the larger function.
The functions set_top_speed and get_top_speed from our car.cc program earlier are inline functions because they are defined inside the class definition. It is appropriate to make them inline functions because they are small.
Static class data
There is an odd thing about the static keyword and class data. By data I mean any variable or property of a class not including member functions. In normal C the static variable is one that keeps its value. For example if you have a function and it has a static variable then when the function ends the static variable sticks around until the function executes again. The static variable will retain its value from execution of the function to execution. Thus the name static for not changing, or more accurately not being cleared.
Now with classes the static variable does the same thing but, there is only one copy of the static variable for the entire class.
Eh? what’s that you say?
Well, it like this... say you instantiate an object of some class and it has a static variable in it.
OK.
Then you instantiate another object of the same class.
Fine.
Now if one of the member data elements is an int and the other is a static int what happens?
There are two copies of the int data element, and only one copy of the static int element.
	
Lets see this in action:

#include <iostream.h>
#include <strclass.h>

class banana
{
 int size;
 static int num;
 public:
 banana(int howbig){num++;size=howbig;}
 ~banana(){num--;}
 int howmany(){return num;}
 int length(){return size;}
};
// Since there is only one copy of the static variable
// we must declare it and initialize it once outside of the
// class for the class.
int banana::num=0;

main()
{
 banana a(5),b(6);
 banana *Z;
 cout<< "We have "<<a.howmany()<<" bananas to start"<<endl;

 //Begin block
 {
 banana c(4);
 banana j(7);
 banana *l;
 l= new banana(8);
 Z=l;
 cout<< "Inside the block we have "<<a.howmany()<<" bananas"<<endl;
 }
 // end of block c and j are destroyed but l is lost.
 cout<< "After the block we have "<<a.howmany()<<" bananas"<<endl;
 delete Z;
 // now the banana created with the new statement is freed.
 cout<< "After the delete we have "<<a.howmany()<<" bananas"<<endl;

}

The run from this program is shown below:

C:\C\CHAPTER2>go32 banana
go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
We have 2 bananas to start
Inside the block we have 5 bananas
After the block we have 3 bananas
After the delete we have 2 bananas

C:\C\CHAPTER2>

The class definition starts normally enough. Here we have class banana with an int and a static int, both of which are private.
class banana
{
 int size;
 static int num;
Next we have something new:
Constructors
Any time you create a member function in a class with the same name as the class you have created a constructor.
public:
 banana(int howbig){num++;size=howbig;}
This function is called any time you instantiate a banana object with an integer number. As in the first line of the main function:
banana a(5),b(6);
Here we have created bananas a and b with the integer sizes of 5 and 6 specified. The constructor accepts the parameters as howbig and assigns the value to size and increments num. In this way as each banana object is created the num variable is increased by one.
[fig 4-9]
Destructors
When you place a ~ (tilde) character before the name of a function that has the same name as the class you define a destructor.
~banana(){num--;}
The destructor executes when ever an object is deleted or goes out of scope. In this case the destructor decrements the num variable reducing the count of bananas.
[fig 4-10]
New Statement
The three lines below show the use of the new statement. First we define a variable l which is a pointer to an object of class banana.
 banana *l;
 l= new banana(8);
 Z=l;
Next we create a new banana of size 8 and place its location in memory into l. Thus l is pointing to the new banana of size 8. We also have Z which is a banana pointer variable. The Z=l statement copies the pointer value of l to Z so that they both point to the same banana of size 8.
When the following message prints it shows that we have 5 bananas. They are a, b, c, j, and one banana of size 8 pointed to by l and Z.
 cout<< "Inside the block we have "<<a.howmany()<<" bananas"<<endl;
 }
 // end of block c and j are destroyed but l is lost.

After the block c, J and l are “out of scope” since they were all defined inside the block. The banana of size 8 however being created by the new statement does not go out of scope. If only l pointed to this banana of size 8 we would have a lost banana.
Now losing a banana is not that bad but loosing memory is. This would be termed a memory leak. We would have allocated memory for the use of a banana and never released it. If we did this inside of a loop we would be allocating and losing memory over and over. The result would be a program that runs just fine for a while and then decides, (once it runs out of memory) to start having errors.
So then this print statement shows that we have 3 bananas namely a, b and a banana of size 8 pointed to by Z.
 cout<< "After the block we have "<<a.howmany()<<" bananas"<<endl;
Delete Statement
The delete statement used with Z will delete our banana of size 8. Now we will have prevented out memory leak by deleting the object and freeing up the memory associated with it. This of course causes the destructor of the banana to execute.
delete Z;
 // now the banana created with the new statement is freed.
This leaves us with two bananas namely a, and c.
 cout<< "After the free we have "<<a.howmany()<<" bananas"<<endl;
Private, Public and Protected Class Members
In our banana class example we used private data and public member functions. Private data and functions can only be accessed by the class they are defined in. Public data and functions can be accessed by any class or code in the program. Protected data and functions can be used by the class they are defined in or inherited from.
What is the advantage or use of this? Private and Public are perhaps more used since conceptually we wish to hide information or not. Information Hiding is one of our goals of modularity. One way to hide information is to make use of Private data and functions. Ideally we would make and data or functions private if they are involved in making the class work. Any functions or data that are needed to use the class would be made public.
Protected information is useful if you plan to inherit the class and wish the classes descendants to change the way the class works. Essentially protected data is inaccessible to any code external to the class, preserving information hiding. If we hide only the data and functions that make the class work then the use of protected data is appropriate. Later if we decide that we need to change the way the class works, for another class that is similar then we can inherit the original class and access the protected information in our new class providing the operation desired without effecting the operation of the original class.	An example of this would be say heaters and air_conditioners. First came heaters i.e.: Defined in the Heat.h file.

#include <iostream.h>
#include <strclass.h>

class heater
{ private:
 String Name;
 int btu;

 protected:
 String Device_Type;
 int set_temperature,on,last_temp;

 void on_off(int temperature_room)
 { last_temp=temperature_room;
 if (set_temperature>temperature_room)
 on=1;
 else on=0;
 }

 public:
 void temperature_reading(int temperature)
 { on_off(temperature); }
 String getName() {return Name;}
 String getDevice_Type() {return Device_Type;}
 int getbtu() {return btu;}
 int getset_temperature() {return set_temperature;}
 int getlast_temp() {return last_temp;}
 int geton() {return on;}

 heater (int set_btu ,int temperature, char *heater_name)
 { btu=set_btu; set_temperature=temperature; Name=heater_name;on=0;
 Device_Type="Heater";}
};
To review the class definition is divided into three parts, private, protected, and public.
In the private section there is defined the string Name and the integer btu. These two variables are not accessible anywhere but in the class heater.
In the protected section there are defined three integers a string and a function. These members are accessible from within the class heater and any class that inherits from the class heater.
In the public section are functions that are accessible from any where.
The last part after the definition of the class is a definition for an overloaded operator for printing. What, you say? An Overloaded Operator? What’s overloaded about it and why should we write such a thing? Well this is the overloaded operator code:
ostream& operator<<(ostream& s,heater& h)
{ return s << h.getDevice_Type() <<" : "<< h.getName() <<endl
 << " Set at : "<<h.getset_temperature()<< endl
 << " With Current Temp : "<<h.getlast_temp()<< endl
 << " On/Off Status : "<<h.geton()<<endl;
}
For right now lets see what this does and then explain how it works. I did say that it was for printing.
Below is a program “heat.cc” that uses this heater class.

#include "heat.h"
void main ()
{
 heater a(1500,72,"Number 1");
 heater b(1500,77,"Number 2");
 a.temperature_reading(75);
 b.temperature_reading(75);
 cout<<a<<endl<<b<<endl;
}

Notice how much easier it is to use a class than it is to define one. In this program we create two heater objects a, and b. They are both initialized with the parameters passed to the constructor function for the heater class. Next we invoke the temperature_reading functions and pass the current temperature for the room. Finally we print out the heater information :

C:\C\CHAPTER2>go32 heat
go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
Heater : Number 1
 Set at : 72
 With Current Temp : 75
 On/Off Status : 0

Heater : Number 2
 Set at : 77
 With Current Temp : 75
 On/Off Status : 1

	
C:\C\CHAPTER2>
Overloaded operators
OK we printed out our heaters with the line :
cout<<a<<endl<<b<<endl;
Which gave us a nicely formatted printout of the information in the heater object. So how did that work and what is all this overloaded stuff?
The operator << is used to move the heater object a to cout. Where a is one of our heaters and cout represents character output.
You might remember from the table in chapter 1 “Operator Order of Precedence” that the << operator is the shift left bit wise operator. So what is it doing now, printing things out? You might think well either it prints or it shifts bits left but both? The answer is yes it does both and it depends on how the operator is used as to which function is used. Not only can it either do left bit shifts and print out integers, characters, floats and heaters but any number of other seemingly unrelated functions.
This part about multiple functions depending on when and how the operator is where the overloaded term comes from. Now that makes sense I would feel a little overloaded too if placed in such a complex situation. My poor little << operator is expected to do so many different things at a moments notice.
So how does the << operator know when to print out a heater? The answer to that is in the first line of code for the overloaded operator.
ostream& operator<<(ostream& s,heater& h)
Now keep in mind that the ‘cout’ is an object of type ostream. Yes yes I didn’t tell you that before but I’m telling you now it is. OK we have an ostream object on one side of the << operator and a heater on the other side in our partial statement:
cout<<a
Operators in C++ are like special functions in a way. Hence the operator<< bit followed by parameters. So if the << operator is like a function then maybe we could re-write our statement:
cout<<a
as
cout=operator<<(cout,a)
So now the first line makes a little sense. How about the rest of the overloaded operator.

{ return s << h.getDevice_Type() <<" : "<< h.getName() <<endl
 << " Set at : "<<h.getset_temperature()<< endl
 << " With Current Temp : "<<h.getlast_temp()<< endl
 << " On/Off Status : "<<h.geton()<<endl;
}
Well as it turns out the first line is the hardest. The rest is relatively straight forward. We get a stream object in the variable s. So what we return is s with some more added on to it. First we add the Device Type string. Next we add a “ : “ or a space a colon followed by another space, just to make our output a little nicer. The rest of the first line is ended with the Name string courtesy of the getName() function in the heater passed in the variable h.
We continue this way using the overloaded << operator to print standard variable types like the return values of the functions. The functions getDeviceType, and getName return String Class Object which have an Overloaded operator defined in the String Class library that we are using.
The getset_temperature, getlast_temp and geton functions all return integers which are part of the standard C++ environment and have overloaded << operators defined for them as well.
Inheritance
As we discussed earlier Inheritance allows us to define a new class in terms of classes we have already defined. In this case we could define air conditioners to be like heaters except that they turn on when it is warmer than the set temperature and that they are called air conditioners instead of heaters. Below is the air_conditioner class from “cool.h”.

class air_conditioner : public heater
{ protected:
 void on_off(int temperature_room)
 { last_temp=temperature_room;
 cout<<"cooling"<<endl;
 if (set_temperature<temperature_room)
 on=1;
 else on=0;
 }

 public:
 void temperature_reading(int temperature)
 { on_off(temperature); }
 air_conditioner(int set_btu, int temperature, char *air_name)
 : heater (set_btu ,temperature, air_name)
 { Device_Type="Air Conditioner";}
};

The first line uses public inheritance to inherit the features of the class heater. The keyword “public” means that the inheritance is public. This has the effect of allowing the new class air_conditioner have access to protected variables and functions in the class heater as if they were protected members of the class air_conditioner. Similarly any public members of class heater are accessible as if they were public members of class air_conditioner.
class air_conditioner : public heater
The remainder of the class definition is much shorter than for heater, since much of the heater class is used. In the definition of air_conditioner we need only to write the functions that are different from those in the class heater.
The first function on_off is rewritten since the air_conditioner turns on when the temperature of the room is warmer than the set temperature, opposite from when a heater turns on.

void on_off(int temperature_room)
 { last_temp=temperature_room;
 if (set_temperature<temperature_room)
 on=1;
 else on=0;
 }
The next function is temperature_reading. You may notice that this function looks remarkably like the one in the heater class. In fact it looks the same! So why did we bother to rewrite it here? The reason is simple, since this function calls on_off which is different in the two classes we need to cause this function to call the correct version of the on_off function. In the air conditioner class the function called is the on_off of air_conditioner. However without this function being defined the code would execute from the heater class and then instead of calling on off of the the air conditioner the on off of the heater would be called. To verify this try commenting out this function and recompile without it. You should find the air conditioner off instead of on.

void temperature_reading(int temperature)
 { on_off(temperature); }

The last function in the air_conditioner class is the first one executed. This is the constructor, notice that we are calling the constructor of the heater class before the opening bracket { that starts the block for the constructor.

air_conditioner(int set_btu, int temperature, char *air_name)
 : heater (set_btu ,temperature, air_name)
 { Device_Type="Air Conditioner";}

The colon following the name of a constructor is a separator allowing you to specify a comma delimitered list of constructor function calls to initialize objects. In this case since the air_conditioner class is inherited from heater we have chosen to use the heater constructor to initialize part of the air_conditioner class.
The effect is that we start out the air_conditioner by setting the btu, the set_termperature and the name in the heater class just as the heater would do. Also the heater initialization sets the DeviceType string to “Heater”. However immediately after the heater initialization ends this constructor continues and assigns the DeviceType string to “Air Conditioner”.

Example program to test the air_conditioner class “cool.cc”
#include "heat.h"
#include "cool.h"
void main ()
{
 heater a(1500,72,"Number 1");
 heater b(1500,77,"Number 2");
 air_conditioner c(1500,65,"Polar 1");
 a.temperature_reading(75);
 b.temperature_reading(75);
 c.temperature_reading(75);
 cout<<a<<endl<<b<<endl<<c<<endl;
}
And the program output.
C:\C\CHAPTER2>go32 cool
go32 version 1.12.maint3 Copyright (C) 1994 DJ Delorie
Heater : Number 1
 Set at : 72
 With Current Temp : 75
 On/Off Status : 0

Heater : Number 2
 Set at : 77
 With Current Temp : 75
 On/Off Status : 1

Air Conditioner : Polar 1
 Set at : 65
 With Current Temp : 75
 On/Off Status : 1

C:\C\CHAPTER2>

Private, Protected and Public Inheritance
We have discussed private, protected and public in terms of the sections of a class definition. Now what we are referring to is inheritance. In the class air_conditioner we used the key word public before the reference to class heater when defining the class air_conditioner. The line is shown below.
class air_conditioner : public heater
Had we chosen instead of public either private or protected the air conditioner class would not worked. The difference is shown in the following table.

Inheritance�Public members�Protected members�Private members��Public�Public�Protected�in accessible.��Protected�Protected�Protected�in accessible��Private�Private�Private�in accessible��
The way to read this table is the column under Inheritance represents the keyword placed prior to the class being derived from, and the columns under public, protected and private members indicates the effects on the members indicated with reference to the inherited class.
For example in public inheritance the following would be true.
All public members (data and functions) of the inherited class would have public accessibility in the inherited class. In the air_conditioner class this can be seen when we use the statement:
cout<<a<<endl<<b<<endl<<c<<endl;
To print the air_conditioner object c.
We have not defined a overloaded operator << to print the air_conditioner class. The reason printing with the << operator works is since we have inherited the heater class the << operator treats the air_conditioner object as if it were a heater object. The function for the overloaded operator << for the heater class uses public functions of the heater class. Since we used public inheritance this is possible with the air_conditioner class.
 If we had chosen instead private or protected then the public access functions of the heater class would no longer be public in the air_conditioner class. Instead the public heater functions would be either private or protected when referenced from an air_conditioner class and the attempt to use the << operator would fail when attempting to compile. The compiler would detect that the heater public access functions are not accessible.
The result of changing the key word public to private is shown below:

C:\C\CHAPTER2> chapter2 cool
Script V1.1 session started Sun Feb 02 17:19:50 1997
Reading specs from c:/djgpp/lib\specs
gcc version 2.6.3
 c:/djgpp/bin\cpp.exe -lang-c++ -v -undef -D__GNUC__=2 -D__GNUG__=2 -D__cplusplus -D__GNUC_MINOR__=6 -Dunix -Di386 -DGO32 -DMSDOS -D__unix__ -D__i386__ -D__GO32__ -D__MSDOS__ -D__unix -D__i386 -D__GO32 -D__MSDOS cool.cc c:/djgpp/tmp\cc000047
GNU CPP version 2.6.3 (80386, BSD syntax)
#include "..." search starts here:
#include <...> search starts here:
 c:/djgpp/cplusinc
 c:/djgpp/include
 /usr/local/lib/g++-include
 /usr/local/include
 /usr/local/go32/include
 /usr/local/lib/gcc-lib/go32/2.6.1/include
 /usr/include
End of search list.
 c:/djgpp/bin\cc1plus.exe c:/djgpp/tmp\cc000047 -quiet -dumpbase cool.cc -version -o c:/djgpp/tmp\cca00047
GNU C++ version 2.6.0 (80386, BSD syntax) compiled by GNU C version 2.6.0.
cool.cc: In function `int main(...)':
cool.cc:11: fields of `heater' are inaccessible in `air_conditioner' due to private inheritance
heat.h:35: in passing argument 2 of `operator <<(ostream &, heater &)'
cool.cc:11: fields of `heater' are inaccessible in `air_conditioner' due to private inheritance
heat.h:35: in passing argument 2 of `operator <<(ostream &, heater &)'
Script completed Sun Feb 02 17:20:24 1997
C:\C\CHAPTER2>

Notice the last few lines from the compiler (I bolded them to make them easier to spot). The message cool.cc:11 indicates that the error was found in file cool.cc on line number 11. The part about fields of ‘heater’ are inaccessible in ‘air_conditioner’ due to private inheritance should now be clear. Line 11 in cool.cc is the cout<<a<<endl<<b<<endl<<c<<endl line, where we attempt to print an air_condioner object using the operator for the heater object which attempts to use the air conditioner object to reach the public heater member functions that have been inherited as private in the air conditioner object. Whew what a mouth full, try explaining that to your date one day!
Inheritance Trees
You are probably already familiar with the concept of trees in terms of a family tree. For example I had a Father, Mother and Brother as shown below.
Inheritance Trees are similar here is a graphical representation of our heater and air conditioner class trees.
So this seems straight forward enough so why bother with the drawings?
The drawings are part of a larger picture, imagine for a moment that you are an employed programmer. Now you have a boss, and she is a veteran programmer titled a “Systems Designer” and a very busy person. She designs new programs to fit together in some overarching scheme of hers that you have not been informed of. However seeing as she is your boss she chooses not to write these new programs but foists them off on you! It becomes very important to your sense of well being and the overall success of your career to understand how she would communicate her plans to you. Most likely using some industry standard method like ERD’s. Yes its acronym time and OOP and OOD are full of them.
ERD --- Entity Relationship Diagram. Essentially this is a drawing of the objects and classes with notations about their contents and relationships including inheritance.
OOP --- Object Oriented Programming. Programming using objects and classes much as we are attempting to do now.
OOD --- Object Oriented Design. Designing systems of programs to take advantage of the object oriented approach, what your hypothetical boss should be doing.
DFD --- Data Flow Diagram. A drawing of how data moves between all the objects of a system.
CFD --- Control Flow Diagram. A drawing of how control changes between all the objects.
In this book we will not concern ourselves so much with OOD, and ERD’s as it is enough just to cover OOP. I mention these industry standard things in case you find yourself employed as a programmer in some house of multiple programmers and a team approach with leaders and industry standards. Please note that while the concept of ERD’s, DFD’s and CFD’s are mostly standardized the actual notation used on them is not standardized yet. So you can always say “I’m not familiar with the notation you use at this site, could you direct me to some reference material?”. Then when you study the material keep in mind this fact “All the acronyms, buzzwords and the like are put there to make the OOD stuff look more complex than it is to protect all those people who know it.”

