
Topic 2

Type Definitions and Complex Data Types

Variable Prefixes

&

 The prefix of an & with a variable returns the address of the variable in memory. For example an integer i would
have the address returned by &i.

*

 The prefix of a * with a variable returns the variable pointed to by the variable prefixed. Also the prefix * can be
used to declare a pointer to a data type. For example an integer i exists and a pointer p also exists, then

 int i, *p ; // i is declared as an integer, p is declared as a pointer to integer data types.

 The pointer variable p is assigned the address of i.

 p= &i ;

 Then the value of i can be gotten using *p

Pointers and typedef structures:
 See next page for more introductory explanation of typedef structures. A typedef structure has sub variables. For
example a variable George and a pointer to a person aMan:

typedef struct {int age; char *name} person;
person George, *aMan;

aMan= &George; // aMan now points to George.

The . can be used with George because the George variable is a structure.
George.age // references the structure “George” and gets the value of “age” within the structure.

To get the same value using pointer variable “aMan” you need to use the -> symbols.
aMan->age // Evaluates the address contained in “aMan” to find the structure “George”, and then gets the value of
“age” within the structure.

ENUM
ENUM allows you to define a list of aliases which represent integer numbers. For example if you find yourself
coding something like:

 #define MON 1
 #define TUE 2
 #define WED 3

You could use enum as below.

 enum week { Mon=1, Tue, Wed, Thu, Fri Sat, Sun} days;
 or
 enum escapes { BELL = '\a', BACKSPACE = '\b', HTAB = '\t',
 RETURN = '\r', NEWLINE = '\n', VTAB = '\v' };
 or
 enum boolean { FALSE = 0, TRUE };

TYPEDEF

TYPEDEF Every variable has a data type. typedef is used to define new data type names to make a
program more readable to the programmer.

For example:

 |
 main() | main()
 { | {
 int money; | typedef int Pounds;
 money = 2; | Pounds money = 2
 } | }

These examples are EXACTLY the same to the compiler. But the right hand example tells the programmer
the type of money he is dealing with.

A common use for typedef is to define a boolean data type as below.
Note: Recent C++ compilers have introduced a boolean datatype.

 typedef enum {FALSE=0, TRUE} Boolean

 main ()
 {
 Boolean flag = TRUE;
 }

And as a final example, how about creating a string datatype?

 typedef char *String;

 main()
 {
 String Text = "Thunderbird";

 printf("%s\n", Text);
 }

The main use for typedef seems to be defining structures. For example:

 typedef struct {int age; char *name} person;
 person people;

Take care to note that person is now a type specifier and NOT a variable name.

As a final note, you can create several data types in one hit.

 typedef int Pounds, Shillings, Pennies, Dollars, Cents;

